* green/exp/annotating/hsv: New directory.
* green/Exp/annotating/hsv/hsv.cc: New source file.
---
milena/sandbox/ChangeLog | 24 +
.../annotating/{achromastism => hsv}/Makefile.am | 0
milena/sandbox/green/exp/annotating/hsv/hsv.cc | 652 ++++++++++++++++++++
3 files changed, 676 insertions(+), 0 deletions(-)
copy milena/sandbox/green/exp/annotating/{achromastism => hsv}/Makefile.am (100%)
create mode 100644 milena/sandbox/green/exp/annotating/hsv/hsv.cc
diff --git a/milena/sandbox/ChangeLog b/milena/sandbox/ChangeLog
index ec9743c..6a47420 100644
--- a/milena/sandbox/ChangeLog
+++ b/milena/sandbox/ChangeLog
@@ -77,6 +77,29 @@
2010-06-21 Yann Jacquelet <jacquelet(a)lrde.epita.fr>
+ Work on Millet hsv descriptors.
+
+ * green/exp/annotating/hsv: New directory.
+ * green/Exp/annotating/hsv/hsv.cc: New source file.
+
+2010-06-21 Yann Jacquelet <jacquelet(a)lrde.epita.fr>
+
+ Work on histograms view as density.
+
+ * green/exp/annotating/histo: New directory.
+ * green/exp/annotating/histo/histo.cc: New Makefile.am.
+ * green/exp/annotating/histo/histo.cc: New source.
+
+2010-06-21 Yann Jacquelet <jacquelet(a)lrde.epita.fr>
+
+ Test error quantification as a color descriptor in our database.
+
+ * green/exp/annotating/error: New directory.
+ * green/exp/annotating/error/Makefile.am: New Makefile.
+ * green/exp/annotating/error/error.cc: New source.
+
+2010-06-21 Yann Jacquelet <jacquelet(a)lrde.epita.fr>
+
Benchmark few descriptors.
* green/exp/annotating/bench: New directory.
@@ -87,6 +110,7 @@
Test on image database the achromatism descriptor.
+ * green/exp/annotating/achromatism: New directory.
* green/exp/annotating/achromatism/Makefile.am: New Makefile.
* green/exp/annotating/achromatism/achromatism.am: New source.
* green/exp/annotating/achromatism/text-color.txt: New image class.
diff --git a/milena/sandbox/green/exp/annotating/achromastism/Makefile.am
b/milena/sandbox/green/exp/annotating/hsv/Makefile.am
similarity index 100%
copy from milena/sandbox/green/exp/annotating/achromastism/Makefile.am
copy to milena/sandbox/green/exp/annotating/hsv/Makefile.am
diff --git a/milena/sandbox/green/exp/annotating/hsv/hsv.cc
b/milena/sandbox/green/exp/annotating/hsv/hsv.cc
new file mode 100644
index 0000000..2aa9113
--- /dev/null
+++ b/milena/sandbox/green/exp/annotating/hsv/hsv.cc
@@ -0,0 +1,652 @@
+// HSV TEST CF MILLET 2008
+
+#include <iostream>
+#include <sstream>
+#include <boost/filesystem.hpp>
+
+#include <mln/img_path.hh>
+
+#include <mln/accu/stat/histo1d.hh>
+
+#include <mln/arith/minus.hh>
+#include <mln/arith/div.hh>
+
+#include <mln/core/image/image1d.hh>
+#include <mln/core/image/image2d.hh>
+#include <mln/core/image/dmorph/image_if.hh>
+
+#include <mln/data/convert.hh>
+#include <mln/data/compute.hh>
+#include <mln/data/stretch.hh>
+#include <mln/data/transform.hh>
+
+#include <mln/literal/zero.hh>
+#include <mln/literal/colors.hh>
+#include <mln/literal/grays.hh>
+
+#include <mln/math/max.hh>
+#include <mln/math/min.hh>
+#include <mln/math/sqr.hh>
+#include <mln/math/sqrt.hh>
+
+#include <mln/opt/at.hh>
+
+#include <mln/geom/nsites.hh>
+
+#include <mln/fun/v2v/rgb_to_hue_map.hh>
+#include <mln/fun/v2v/rgb_to_saturation_map.hh>
+#include <mln/fun/v2v/rgb_to_value_map.hh>
+
+#include <mln/io/ppm/load.hh>
+#include <mln/io/pgm/save.hh>
+#include <mln/io/plot/save_image_sh.hh>
+
+#include <mln/value/rgb8.hh>
+
+//============================================================================//
+// HISTOGRAM
+//============================================================================//
+
+template <typename I>
+mln_value(I) count_histo(const mln::Image<I>& histo_)
+{
+ const I& histo = exact(histo_);
+
+ mln_precondition(histo.is_valid());
+
+ mln_value(I) result = mln::literal::zero;
+ mln_piter(I) p(histo.domain());
+
+ for_all(p)
+ result += histo(p);
+
+ return result;
+}
+
+template <typename I>
+mln_value(I) sum_frequency_histo(const mln::Image<I>& histo_)
+{
+ const I& histo = exact(histo_);
+
+ mln_precondition(histo.is_valid());
+
+ mln_value(I) sum = mln::literal::zero;
+ mln_piter(I) p(histo.domain());
+
+ for_all(p)
+ sum += histo(p);
+
+ return sum;
+}
+
+template <typename I>
+mln_value(I) count_null_frequency_histo(const mln::Image<I>& histo_)
+{
+ const I& histo = exact(histo_);
+
+ mln_precondition(histo.is_valid());
+
+ mln_value(I) count = mln::literal::zero;
+ mln_piter(I) p(histo.domain());
+
+ for_all(p)
+ if (0 == histo(p))
+ count++;
+
+ return count;
+}
+
+template <typename I>
+mln_coord(mln_site_(I)) peak_histo(const mln::Image<I>& histo_)
+{
+ const I& histo = exact(histo_);
+
+ mln_precondition(histo.is_valid());
+
+ // Find the peak of the histogram
+ mln_value(I) v_max = mln::opt::at(histo, mln::literal::zero);
+ mln_coord(mln_site_(I)) p_max = mln::literal::zero;
+ mln_piter(I) p(histo.domain());
+
+ for_all(p)
+ {
+ if (v_max < histo(p))
+ {
+ v_max = histo(p);
+ p_max = p.ind();
+ }
+ }
+
+ return p_max;
+}
+
+template <typename I>
+mln_value(I) max_frequency_histo(const mln::Image<I>& histo_)
+{
+ const I& histo = exact(histo_);
+
+ mln_precondition(histo.is_valid());
+
+ // Find the value of the peak from the histogram
+ mln_value(I) max = mln::opt::at(histo, mln::literal::zero);
+ mln_piter(I) p(histo.domain());
+
+ for_all(p)
+ {
+ max = mln::math::max(histo(p),max);
+ }
+
+ return max;
+}
+
+template <typename I>
+float mean_histo(const mln::Image<I>& histo_)
+{
+ const I& histo = exact(histo_);
+
+ mln_precondition(histo.is_valid());
+
+ // Find the mean of the histogram
+ float sum = 0;
+ float mean = 0;
+
+ mln_piter(I) p(histo.domain());
+
+ for_all(p)
+ {
+ sum += histo(p);
+ mean += p.ind()*histo(p);
+ }
+
+ mean = mean / sum;
+
+ return mean;
+}
+
+template <typename I>
+float cmp_equi_frequency_histo(const mln::Image<I>& histo_)
+{
+ const I& histo = exact(histo_);
+
+ mln_precondition(histo.is_valid());
+
+ // Find the mean of the histogram
+ float sum = 0;
+ float var = 0;
+
+ mln_piter(I) p(histo.domain());
+
+ for_all(p)
+ {
+ sum += histo(p);
+ var += mln::math::sqr(histo(p) - (1/256.0));
+ }
+
+ var = var / sum;
+
+ return var;
+}
+
+template <typename I>
+float var_histo(const mln::Image<I>& histo_, float mean)
+{
+ const I& histo = exact(histo_);
+
+ mln_precondition(histo.is_valid());
+
+ // Find the mean of the histogram
+ float sum = 0;
+ float var = 0;
+
+ mln_piter(I) p(histo.domain());
+
+ for_all(p)
+ {
+ sum += histo(p);
+ var += mln::math::sqr(p.ind() - mean) * histo(p);
+ }
+
+ var = var / sum;
+
+ return var;
+}
+
+template <typename I>
+float mean_frequency_histo(const mln::Image<I>& histo_)
+{
+ const I& histo = exact(histo_);
+
+ mln_precondition(histo.is_valid());
+
+ // Find the mean of the histogram
+ float sum = 0;
+ float mean = 0;
+
+ mln_piter(I) p(histo.domain());
+
+ for_all(p)
+ {
+ sum++;
+ mean += histo(p);
+ }
+
+ mean = mean / sum;
+
+ return mean;
+}
+
+template <typename I>
+float stddev_frequency_histo(const mln::Image<I>& histo_, float mean)
+{
+ const I& histo = exact(histo_);
+
+ mln_precondition(histo.is_valid());
+
+ // Find the var of the histogram
+ float sum = 0;
+ float var = 0;
+
+ mln_piter(I) p(histo.domain());
+
+ for_all(p)
+ {
+ sum++;
+ var += mln::math::sqr(histo(p)-mean);
+ }
+
+ var = mln::math::sqrt(var / sum);
+
+ return var;
+}
+
+
+//============================================================================//
+// HUE TEST
+//============================================================================//
+
+mln::value::rgb8 label_val(const mln::value::int_u8 val)
+{
+ mln::value::rgb8 result;
+
+ if (82 > val)
+ result = mln::literal::black;
+ else if (179 > val)
+ result= mln::literal::medium_gray;
+ else
+ result = mln::literal::white;
+
+ return result;
+}
+
+
+mln::value::rgb8 label_orange_or_brown(const mln::value::rgb8 color,
+ const mln::value::int_u8 sat,
+ const mln::value::int_u8 val)
+{
+ mln::value::rgb8 result;
+
+ if (mln::literal::orange == color)
+ {
+ unsigned dist_orange = mln::math::abs(sat - 184)
+ + mln::math::abs(val - 65);
+
+ unsigned dist_brown = mln::math::abs(sat - 255)
+ + mln::math::abs(val - 125);
+
+ if (dist_orange < dist_brown)
+ result = mln::literal::orange;
+ else
+ result = mln::literal::brown;
+ }
+ else
+ result = color;
+
+ return result;
+}
+
+mln::value::rgb8 label_yellow_or_green(const mln::value::rgb8 color,
+ const mln::value::int_u8 val)
+{
+ mln::value::rgb8 result;
+
+ if (mln::literal::yellow == color)
+ {
+ // Is it green or yellow ?
+ if (80 > val)
+ result = mln::literal::green;
+ else
+ result = mln::literal::yellow;
+ }
+ else
+ return color;
+
+ return result;
+}
+
+mln::value::rgb8 label_hue(const mln::value::int_u8 hue)
+{
+ mln::value::rgb8 result;
+
+
+ if (10 > hue)
+ result = mln::literal::red;
+ else if (32 > hue)
+ result = mln::literal::orange;
+ else if (53 > hue)
+ result = mln::literal::yellow;
+ else if (74 > hue)
+ result = mln::literal::green; // chartreuse
+ else if (96 > hue)
+ result = mln::literal::green;
+ else if (116 > hue)
+ result = mln::literal::green;// turquoise, aigue-marine
+ else if (138 > hue)
+ result = mln::literal::green; // cyan
+ else if (159 > hue)
+ result = mln::literal::blue; // azur
+ else if (181 > hue)
+ result = mln::literal::blue;
+ else if (202 > hue)
+ result = mln::literal::violet;
+ else if (223 > hue)
+ result = mln::literal::pink;
+ else // if (244 > hue)
+ result = mln::literal::red;
+
+ return result;
+}
+
+float hue_test(const std::string input,
+ const std::string output,
+ const std::string tmp,
+ const short threshold)
+
+{
+ typedef mln::fun::v2v::rgb_to_hue_map<8> t_rgb_to_hue_map;
+
+ mln::image2d<mln::value::rgb8> input_rgb8;
+ mln::image2d<mln::value::int_u8> map;
+ mln::image1d<unsigned> histo;
+ mln::image1d<float> histo_float;
+ float cnt1;
+ float cnt2;
+ float prop;
+ short peak;
+ mln::value::rgb8 color;
+ float sum;
+ mln::point1d inf;
+ mln::point1d sup;
+
+ mln::io::ppm::load(input_rgb8, input.c_str());
+
+ map = mln::data::transform(input_rgb8, t_rgb_to_hue_map());
+ histo = mln::data::compute(mln::accu::meta::stat::histo1d(), map);
+ sum = sum_frequency_histo(histo);
+ histo_float = mln::data::convert(float(), histo) / sum;
+ peak = mean_histo(histo); //peak_histo(histo);
+ color = label_hue(peak);
+ inf = mln::point1d(mln::math::max(0, peak-threshold));
+ sup = mln::point1d(mln::math::min(255, peak+threshold));
+ cnt1 = count_histo(histo_float|mln::box1d(inf,sup));
+ cnt2 = count_histo(histo_float);
+ prop = ((100.0 * cnt1) / cnt2);
+
+ mln::io::plot::save_image_sh(histo_float, output.c_str());
+ mln::io::pgm::save(map, tmp.c_str());
+// std::cout << "peak = " << peak << std::endl;
+// std::cout << "color = " << color << std::endl;
+
+ return prop;
+}
+
+//============================================================================//
+// SATURATION TEST
+//============================================================================//
+
+float saturation_test(const std::string input,
+ const std::string output,
+ const std::string tmp,
+ const short threshold)
+
+{
+ typedef mln::fun::v2v::rgb_to_saturation_map<8> t_rgb_to_saturation_map;
+
+ mln::image2d<mln::value::rgb8> input_rgb8;
+ mln::image2d<mln::value::int_u8> map;
+ mln::image1d<unsigned> histo;
+ mln::image1d<float> histo_float;
+ float cnt1;
+ float cnt2;
+ float sum;
+ float prop;
+
+ mln::io::ppm::load(input_rgb8, input.c_str());
+
+ map = mln::data::transform(input_rgb8, t_rgb_to_saturation_map());
+ histo = mln::data::compute(mln::accu::meta::stat::histo1d(), map);
+ sum = sum_frequency_histo(histo);
+ histo_float = mln::data::convert(float(), histo) / sum;
+ cnt1 = count_histo(histo_float | mln::box1d(mln::point1d(0),
+ mln::point1d(threshold)));
+ cnt2 = count_histo(histo_float);
+ prop = ((100.0 * cnt1) / cnt2);
+
+ mln::io::plot::save_image_sh(histo_float, output.c_str());
+ mln::io::pgm::save(map, tmp.c_str());
+
+ return prop;
+}
+
+//============================================================================//
+// VALUE TEST
+//============================================================================//
+
+// calcul de contribution
+float r(short p, unsigned histo_p, short x, unsigned histo_x)
+{
+ float result = mln::math::sqr(((float)histo_x / histo_p) * (x-p));
+
+ return result;
+}
+
+template <typename I>
+float stddev3(const mln::Image<I>& histo_, unsigned peak)
+{
+ const I& histo = exact(histo_);
+
+ mln_precondition(histo.is_valid());
+
+ // Compute stddev
+
+ float stddev = 0.0;
+
+ mln_piter(I) p(histo.domain());
+
+ for_all(p)
+ {
+ stddev += r((short)peak, mln::opt::at(histo,peak), p.ind(), histo(p));
+ }
+
+ return stddev;
+}
+
+template <typename I>
+float stddev2(const mln::Image<I>& histo_, unsigned peak, unsigned limit)
+{
+ const I& histo = exact(histo_);
+
+ mln_precondition(histo.is_valid());
+
+ float stddev_low = 0.0;
+ float stddev_up = 0.0;
+ float ret = 0.0;
+
+ // A transformer avec des iterators
+
+ if (250 > peak)
+ stddev_up = stddev3(histo |mln::box1d(mln::point1d(peak+1),
+ mln::point1d(peak+limit)), peak);
+
+ if (5 < peak)
+ stddev_low = stddev3(histo |mln::box1d(mln::point1d(peak-limit),
+ mln::point1d(peak-1)), peak);
+
+ ret = (250 < peak)? stddev_low : (5 > peak)? stddev_up :
+ (stddev_low + stddev_up)/2;
+
+ return ret;
+}
+
+// DOC:
+// la discrimination entre la base AFP et la base ICDAR peut se faire en
+// étudiant la forme des densités des niveaux de gris.
+// Les images naturelles semblent avoir un spectre recouvrant
+// en général les 256 niveaux de gris alors que les images de documents ont
+// une présence importante du fond. Dans le cadre d'une densité, ce qui est
+// alloué sur le fond ne peut se retrouver ailleurs. Une comparaison avec la
+// densité équiprobable nous renseigne donc sur la nature des images.
+// Il semble néanmoins qu'un certain nombre d'images défient ce dispositif.
+// Par exemple des gros plans sur des zones mono-teintée (ski, voile,site web).
+
+
+
+
+float value_test(const std::string input,
+ const std::string output,
+ const std::string tmp,
+ const short threshold)
+
+{
+ typedef mln::fun::v2v::rgb_to_value_map<8> t_rgb_to_value_map;
+
+ mln::image2d<mln::value::rgb8> input_rgb8;
+ mln::image2d<mln::value::int_u8> map;
+ mln::image1d<unsigned> histo;
+ mln::image1d<float> histo_float;
+ float cnt1;
+ float cnt2;
+ float prop;
+ float sum;
+ float prop4;
+ short peak;
+ mln::point1d inf;
+ mln::point1d sup;
+
+
+ mln::io::ppm::load(input_rgb8, input.c_str());
+
+ map = mln::data::transform(input_rgb8, t_rgb_to_value_map());
+ histo = mln::data::compute(mln::accu::meta::stat::histo1d(), map);
+ sum = sum_frequency_histo(histo);
+ histo_float = mln::data::convert(float(), histo) / sum;
+ prop4 = cmp_equi_frequency_histo(histo_float);
+ peak = peak_histo(histo); // mean_histo(histo);
+ //prop = stddev2(histo, peak, threshold);
+ inf = mln::point1d(mln::math::max(0, peak-threshold));
+ sup = mln::point1d(mln::math::min(255, peak+threshold));
+ cnt1 = count_histo(histo_float|mln::box1d(inf,sup));
+ cnt2 = count_histo(histo_float);
+ prop = ((100.0 * cnt1) / cnt2);
+
+ std::cerr << "peak = " << peak << std::endl;
+ std::cerr << "inf = " << inf << std::endl;
+ std::cerr << "sup = " << sup << std::endl;
+ std::cerr << "cnt1 = " << cnt1 << std::endl;
+ std::cerr << "cnt2 = " << cnt2 << std::endl;
+ std::cerr << "prop = " << prop << std::endl;
+ std::cerr << "prop4= " << prop4 << std::endl;
+
+ mln::io::plot::save_image_sh(histo_float, output.c_str());
+ mln::io::pgm::save(map, tmp.c_str());
+
+ return prop;
+}
+
+//============================================================================//
+// MAIN
+//============================================================================//
+
+
+int main()
+{
+ typedef boost::filesystem::path t_path;
+ typedef boost::filesystem::directory_iterator t_iter_path;
+
+// t_path full_path[] = {t_path(ICDAR_20P_TEXT_ONLY_IMG_PATH),
+// t_path(ICDAR_20P_TEXT_COLOR_IMG_PATH),
+// t_path(ICDAR_20P_TEXT_PHOTO_IMG_PATH)};
+
+ t_path full_path[] = {t_path(AFP_PPM_IMG_PATH)};
+
+ std::cout << "#!/usr/bin/gnuplot" <<
std::endl;
+ std::cout << "set terminal x11 persist 1" <<
std::endl;
+ std::cout << "#HUE - SATURATION - VALUE" <<
std::endl;
+ std::cout << "plot '-' using 1:2 with point notitle,\\"
<< std::endl;
+ std::cout << " '-' using 1:2 with point notitle,\\"
<< std::endl;
+ std::cout << " '-' using 1:2 with point notitle"
<< std::endl;
+
+ for (int i = 0; i < 1; ++i)
+ {
+ if (boost::filesystem::exists(full_path[i]) &&
+ boost::filesystem::is_directory(full_path[i]))
+ {
+ boost::filesystem::system_complete(full_path[i]);
+ const t_iter_path end_iter;
+ float prop = 0.0;
+ t_path directory;
+ t_path leaf;
+ t_path output;
+ t_path tmp;
+
+ std::cerr << "entering " << full_path[i] <<
std::endl;
+
+ for (t_iter_path dir_iter(full_path[i]); end_iter != dir_iter; ++dir_iter)
+ {
+ std::cerr << dir_iter->path() << std::endl;
+ // concatenation de chaine
+// directory = (ANNOTATING_ICDAR_HUE_RET_PATH);
+ directory = (ANNOTATING_AFP_HUE_RET_PATH);
+ leaf = dir_iter->path().leaf();
+ output = change_extension(directory / leaf, ".sh");
+ tmp = change_extension(directory / leaf, ".pgm");
+
+ prop = hue_test(dir_iter->path().string(),
+ output.string(),
+ tmp.string(),
+ 20);
+
+ std::cout << prop << " ";
+
+// directory = (ANNOTATING_ICDAR_SAT_RET_PATH);
+ directory = (ANNOTATING_AFP_SAT_RET_PATH);
+ leaf = dir_iter->path().leaf();
+ output = change_extension(directory / leaf, ".sh");
+ tmp = change_extension(directory / leaf, ".pgm");
+
+ prop = saturation_test(dir_iter->path().string(),
+ output.string(),
+ tmp.string(),
+ 25);
+
+ std::cout << prop << " ";
+
+// directory = (ANNOTATING_ICDAR_VAL_RET_PATH);
+ directory = (ANNOTATING_AFP_VAL_RET_PATH);
+ leaf = dir_iter->path().leaf();
+ output = change_extension(directory / leaf, ".sh");
+ tmp = change_extension(directory / leaf, ".pgm");
+
+ prop = value_test(dir_iter->path().string(),
+ output.string(),
+ tmp.string(),
+ 15);
+
+ std::cout << prop << " ";
+ std::cout << "# " << dir_iter->path().leaf() <<
std::endl;
+ }
+ std::cout << "e" << std::endl;
+ }
+ }
+
+ return 0;
+}
--
1.5.6.5