* green/k_mean/Makefile.am : Remove old makefile.
* green/k_mean/k_mean.hh : Remove old library code.
* green/k_mean/k_mean.cc : Remove old unitary tests.
* green/k_mean : Remove old directory.
---
trunk/milena/sandbox/ChangeLog | 9 +
trunk/milena/sandbox/green/k_mean/Makefile.am | 50 --
trunk/milena/sandbox/green/k_mean/k_mean.cc | 450 -----------------
trunk/milena/sandbox/green/k_mean/k_mean.hh | 672 -------------------------
4 files changed, 9 insertions(+), 1172 deletions(-)
delete mode 100644 trunk/milena/sandbox/green/k_mean/Makefile.am
delete mode 100644 trunk/milena/sandbox/green/k_mean/k_mean.cc
delete mode 100644 trunk/milena/sandbox/green/k_mean/k_mean.hh
diff --git a/trunk/milena/sandbox/ChangeLog b/trunk/milena/sandbox/ChangeLog
index 4555e7f..2a8148f 100644
--- a/trunk/milena/sandbox/ChangeLog
+++ b/trunk/milena/sandbox/ChangeLog
@@ -1,5 +1,14 @@
2009-09-07 Yann Jacquelet <jacquelet(a)lrde.epita.fr>
+ Delete old k_mean source location.
+
+ * green/k_mean/Makefile.am : Remove old makefile.
+ * green/k_mean/k_mean.hh : Remove old library code.
+ * green/k_mean/k_mean.cc : Remove old unitary tests.
+ * green/k_mean : Remove old directory.
+
+2009-09-07 Yann Jacquelet <jacquelet(a)lrde.epita.fr>
+
Delete old histo1d source location.
* green/histo1d/Makefile.am : Remove old makefile.
diff --git a/trunk/milena/sandbox/green/k_mean/Makefile.am
b/trunk/milena/sandbox/green/k_mean/Makefile.am
deleted file mode 100644
index 1834984..0000000
--- a/trunk/milena/sandbox/green/k_mean/Makefile.am
+++ /dev/null
@@ -1,50 +0,0 @@
-#
-# Generic Makefile
-#
-
-BIN_PATTERN= trunk/build/milena
-SRC_PATTERN= trunk/milena
-
-INCLUDES= -I/home/green/svn/oln/trunk/milena
-CXXFLAGS= -ggdb -O0 -Wall -W -pedantic -ansi -pipe $(INCLUDES)
-ECHO= echo
-RM= rm
-MKDIR= mkdir
-CP= cp
-
-ifeq ($(findstring $(BIN_PATTERN),$(PWD)), $(BIN_PATTERN))
-BIN_DIR=
-SRC_DIR= $(subst $(BIN_PATTERN),$(SRC_PATTERN), $(PWD))/
-else
-BIN_DIR= $(subst $(SRC_PATTERN),$(BIN_PATTERN), $(PWD))/
-SRC_DIR=
-endif
-
-TARGET= $(BIN_DIR)$(notdir $(PWD))
-BIN_MAKE= $(BIN_DIR)Makefile
-SRC_MAKE= $(SRC_DIR)Makefile.am
-
-
-SRC_FILES= $(wildcard $(SRC_DIR)*.cc)
-OLD_FILES= $(addsuffix ~, $(SRC_FILES))
-OBJ_FILES= $(addprefix $(BIN_DIR), $(notdir $(SRC_FILES:%.cc=%.o)))
-
-
-all: $(BIN_DIR) $(TARGET)
- @$(ECHO) "Compilation terminée"
-
-$(BIN_DIR):
- $(MKDIR) $(BIN_DIR)
- $(CP) $(SRC_MAKE) $(BIN_MAKE)
-
-$(TARGET):$(OBJ_FILES)
- $(LINK.cc) $^ $(LOADLIBES) $(LDLIBS) -o $@
-
-$(BIN_DIR)%.o:$(SRC_DIR)%.cc
- $(COMPILE.cc) $(OUTPUT_OPTION) $<
-
-clean:
- -@$(RM) $(TARGET)
- -@$(RM) $(OBJ_FILES)
- -@$(RM) $(OLD_FILES)
-
diff --git a/trunk/milena/sandbox/green/k_mean/k_mean.cc
b/trunk/milena/sandbox/green/k_mean/k_mean.cc
deleted file mode 100644
index 985e0e0..0000000
--- a/trunk/milena/sandbox/green/k_mean/k_mean.cc
+++ /dev/null
@@ -1,450 +0,0 @@
-// UNARY TESTS ON K_MEAN
-
-#include "k_mean.hh"
-
-#include <iostream>
-
-#include <mln/pw/value.hh>
-
-#include <mln/value/int_u8.hh>
-#include <mln/value/rgb8.hh>
-
-#include <mln/literal/colors.hh>
-
-#include <mln/algebra/vec.hh>
-#include <mln/algebra/mat.hh>
-
-#include <mln/core/macros.hh>
-#include <mln/core/contract.hh>
-#include <mln/core/image/image2d.hh>
-#include <mln/core/image/dmorph/image_if.hh>
-
-#include <mln/io/ppm/load.hh>
-#include <mln/io/pgm/load.hh>
-#include <mln/io/pgm/save.hh>
-#include <mln/io/ppm/save.hh>
-
-#include <mln/data/transform.hh>
-
-#include <mln/trait/value/print.hh>
-#include <mln/trait/image/print.hh>
-
-#define SIZE_IMAGE 512
-#define SIZE_SAMPLE1 (512*512)
-#define SIZE_SAMPLE2 4
-#define NB_CENTER 2
-#define DIM_POINT 3
-#define TYPE_POINT double
-#define MAT_POINT1 mln::algebra::mat<SIZE_SAMPLE1, DIM_POINT, TYPE_POINT>
-#define MAT_POINT2 mln::algebra::mat<SIZE_SAMPLE2, DIM_POINT, TYPE_POINT>
-#define MAT_CENTER mln::algebra::mat<NB_CENTER, DIM_POINT, TYPE_POINT>
-#define MAT_DISTANCE1 mln::algebra::mat<SIZE_SAMPLE1, NB_CENTER, TYPE_POINT>
-#define MAT_DISTANCE2 mln::algebra::mat<SIZE_SAMPLE2, NB_CENTER, TYPE_POINT>
-#define MAT_GROUP1 mln::algebra::mat<SIZE_SAMPLE1, NB_CENTER, TYPE_POINT>
-#define MAT_GROUP2 mln::algebra::mat<SIZE_SAMPLE2, NB_CENTER, TYPE_POINT>
-#define VEC_VAR mln::algebra::vec<NB_CENTER, TYPE_POINT>
-
-
-void test_instantiation()
-{
- mln::clustering::k_mean<SIZE_SAMPLE2,NB_CENTER, DIM_POINT, TYPE_POINT> kmean;
-
- // test the compilation
-
- std::cout << "test instantiation : ok" << std::endl;
-}
-
-struct rgb8_to_4colors : mln::Function_v2v<rgb8_to_4colors>
-{
- typedef mln::value::rgb8 result;
-
- mln::value::rgb8 operator()(const mln::value::rgb8& color) const
- {
- mln::value::rgb8 result;
- unsigned hash = (color.red() + color.green() + color.blue()) % 4;
-
- switch (hash)
- {
- case 0: result = mln::literal::lime; break;
- case 1: result = mln::literal::brown; break;
- case 2: result = mln::literal::teal; break;
- case 3: result = mln::literal::purple; break;
- }
-
- return result;
- }
-};
-
-
-void print_color(const mln::value::rgb8& color)
-{
- std::cout << "{r=" << color.red() << ", ";
- std::cout << "g=" << color.green() << ", ";
- std::cout << "b=" << color.blue() << "}"
<< std::endl;
-}
-
-void fill_image_with_4colors(mln::image2d<mln::value::rgb8>& img)
-{
- const mln::value::rgb8 lime = mln::literal::lime;
- const mln::value::rgb8 brown = mln::literal::brown;
- const mln::value::rgb8 teal = mln::literal::teal;
- const mln::value::rgb8 purple = mln::literal::purple;
-
- img = mln::data::transform(img, rgb8_to_4colors());
-
- //print_color(lime);
- //print_color(brown);
- //print_color(teal);
- //print_color(purple);
-}
-
-bool is_equivalent(const mln::image2d<mln::value::rgb8>& img,
- const MAT_POINT1& point)
-{
- mln_piter_(mln::image2d<mln::value::rgb8>) pi(img.domain());
- bool result = true;
- unsigned index = -1;
-
- for_all(pi)
- {
- bool test = true;
-
- ++index;
-
- test = test && (point(index,0) == img(pi).red());
- test = test && (point(index,1) == img(pi).green());
- test = test && (point(index,2) == img(pi).blue());
-
- if (!test)
- {
- std::cout << pi;
- std::cout << "{r=" << img(pi).red() << ",
";
- std::cout << "g=" << img(pi).green() << ",
";
- std::cout << "b=" << img(pi).blue() <<
"}";
- std::cout << index;
- std::cout << "[r=" << point(index,0) << ",
";
- std::cout << "g=" << point(index,1) << ",
";
- std::cout << "b=" << point(index,2) << "]"
<< std::endl;
-
- mln_assertion(test);
- }
-
- result &= test;
- }
-
- return result;
-}
-
-void test_init_point()
-{
- typedef mln::value::rgb8 rgb8;
- mln::image2d<rgb8> img_ref;
-
- mln::clustering::k_mean<SIZE_SAMPLE1,NB_CENTER, DIM_POINT, TYPE_POINT> kmean;
-
- mln::io::ppm::load(img_ref, "/usr/local/share/olena/images/lena.ppm");
- //mln::io::ppm::save(img_ref, "verif.ppm");
-
- fill_image_with_4colors(img_ref);
- kmean.init_point(img_ref);
-
- mln_assertion(true == is_equivalent(img_ref, kmean.get_point()));
-
- std::cout << "Test init point : ok" << std::endl;
-}
-
-void set_point(MAT_POINT2& point,
- const unsigned index,
- const mln::value::rgb8& color)
-{
- point(index,0) = color.red();
- point(index,1) = color.green();
- point(index,2) = color.blue();
-}
-
-void fake_init_point(MAT_POINT2& point,
- const mln::value::rgb8& point1,
- const mln::value::rgb8& point2,
- const mln::value::rgb8& point3,
- const mln::value::rgb8& point4)
-{
- set_point(point, 0, point1);
- set_point(point, 1, point2);
- set_point(point, 2, point3);
- set_point(point, 3, point4);
-}
-
-bool is_equal(const mln::value::rgb8& ref,
- const MAT_CENTER& center,
- const unsigned i)
-{
- bool result = true;
-
- result = result && (center(i, 0) - ref.red() < 1.0);
- result = result && (center(i, 1) - ref.green() < 1.0);
- result = result && (center(i, 2) - ref.blue() < 1.0);
-
- return result;
-}
-
-void test_init_center()
-{
- mln::clustering::k_mean<SIZE_SAMPLE2, NB_CENTER, DIM_POINT, TYPE_POINT> kmean;
-
- const mln::value::rgb8 lime = mln::literal::lime;
- const mln::value::rgb8 brown = mln::literal::brown;
- const mln::value::rgb8 teal = mln::literal::teal;
- const mln::value::rgb8 purple = mln::literal::purple;
-
- fake_init_point(kmean.get_point(), lime, brown, teal, purple);
- kmean.init_center();
-
- mln_assertion(is_equal(lime, kmean.get_center(), 0) ||
- is_equal(brown, kmean.get_center(), 0) ||
- is_equal(teal, kmean.get_center(), 0) ||
- is_equal(purple, kmean.get_center(), 0));
-
- mln_assertion(is_equal(lime, kmean.get_center(), 1) ||
- is_equal(brown, kmean.get_center(), 1) ||
- is_equal(teal, kmean.get_center(), 1) ||
- is_equal(purple, kmean.get_center(), 1));
-
- std::cout << "Test init center : ok" << std::endl;
-}
-
-void set_center(MAT_CENTER& center,
- const unsigned index,
- const mln::value::rgb8& color)
-{
- center(index,0) = color.red();
- center(index,1) = color.green();
- center(index,2) = color.blue();
-}
-
-void fake_init_center(MAT_CENTER& center,
- const mln::value::rgb8 center1,
- const mln::value::rgb8 center2)
-{
-
- set_center(center, 0, center1);
- set_center(center, 1, center2);
-}
-
-
-double dist(mln::value::rgb8 color1, mln::value::rgb8 color2)
-{
- double red = color1.red() - color2.red();
- double green = color1.green() - color2.green();
- double blue = color1.blue() - color2.blue();
- double result= red * red + green * green + blue * blue;
-
- return result;
-}
-
-void test_update_distance()
-{
- mln::clustering::k_mean<SIZE_SAMPLE2, NB_CENTER, DIM_POINT, TYPE_POINT> kmean;
-
- const mln::value::rgb8 lime = mln::literal::lime;
- const mln::value::rgb8 brown = mln::literal::brown;
- const mln::value::rgb8 teal = mln::literal::teal;
- const mln::value::rgb8 purple = mln::literal::purple;
- const mln::value::rgb8 c1 = lime;
- const mln::value::rgb8 c2 = purple;
- const MAT_DISTANCE2& dist_v = kmean.get_distance();
-
- fake_init_point(kmean.get_point(), lime, brown, teal, purple);
- fake_init_center(kmean.get_center(), c1, c2);
- kmean.update_distance();
-
- mln_assertion(dist(lime, c1) == dist_v(0,0));
- mln_assertion(dist(lime, c2) == dist_v(0,1));
- mln_assertion(dist(brown, c1) == dist_v(1,0));
- mln_assertion(dist(brown, c2) == dist_v(1,1));
- mln_assertion(dist(teal, c1) == dist_v(2,0));
- mln_assertion(dist(teal, c2) == dist_v(2,1));
- mln_assertion(dist(purple, c1) == dist_v(3,0));
- mln_assertion(dist(purple, c2) == dist_v(3,1));
-
- std::cout << "Test update distance : ok" << std::endl;
-}
-
-void set_distance(MAT_DISTANCE2& distance,
- const unsigned index,
- const double d1,
- const double d2)
-{
- distance(index,0) = d1;
- distance(index,1) = d2;
-}
-
-void fake_update_distance(MAT_DISTANCE2& distance,
- const mln::value::rgb8& point1,
- const mln::value::rgb8& point2,
- const mln::value::rgb8& point3,
- const mln::value::rgb8& point4,
- const mln::value::rgb8& center1,
- const mln::value::rgb8& center2)
-{
- set_distance(distance, 0, dist(point1, center1), dist(point1, center2));
- set_distance(distance, 1, dist(point2, center1), dist(point2, center2));
- set_distance(distance, 2, dist(point3, center1), dist(point3, center2));
- set_distance(distance, 3, dist(point4, center1), dist(point4, center2));
-
- /*
- for (int i = 0; i < SIZE_SAMPLE2; ++i)
- for (int j = 0; j < NB_CENTER; ++j)
- std::cout << "d(" << i << "," << j
<< ") = " << distance(i,j) <<std::endl;
- */
-}
-
-void test_update_group()
-{
- mln::clustering::k_mean<SIZE_SAMPLE2, NB_CENTER, DIM_POINT, TYPE_POINT> kmean;
-
- const mln::value::rgb8 lime = mln::literal::lime;
- const mln::value::rgb8 brown = mln::literal::brown;
- const mln::value::rgb8 teal = mln::literal::teal;
- const mln::value::rgb8 purple = mln::literal::purple;
- const mln::value::rgb8 c1 = lime;
- const mln::value::rgb8 c2 = purple;
- const unsigned point1_min= 0; // lime near lime (c1)
- const unsigned point2_min= 1; // brown near purple (c2)
- const unsigned point3_min= 1; // teal near purple (c2)
- const unsigned point4_min= 1; // purple near purple (c2)
- const MAT_GROUP2& group = kmean.get_group();
-
- fake_init_point(kmean.get_point(), lime, brown, teal, purple);
- fake_init_center(kmean.get_center(), c1, c2);
- fake_update_distance(kmean.get_distance(), lime, brown, teal, purple, c1, c2);
- kmean.update_group();
-
- mln_assertion(0.0 == group(0, 1 - point1_min));
- mln_assertion(1.0 == group(0, point1_min));
- mln_assertion(0.0 == group(1, 1 - point2_min));
- mln_assertion(1.0 == group(1, point2_min));
- mln_assertion(0.0 == group(2, 1 - point3_min));
- mln_assertion(1.0 == group(2, point3_min));
- mln_assertion(0.0 == group(3, 1 - point4_min));
- mln_assertion(1.0 == group(3, point4_min));
-
- std::cout << "Test update group : ok" << std::endl;
-}
-
-void set_group(MAT_GROUP2& group,
- const unsigned index,
- const unsigned min)
-{
- group(index, min) = 1.0;
- group(index, 1-min) = 0.0;
-}
-
-
-void fake_update_group(MAT_GROUP2& group,
- const unsigned& point1_min,
- const unsigned& point2_min,
- const unsigned& point3_min,
- const unsigned& point4_min)
-{
- set_group(group, 0, point1_min);
- set_group(group, 1, point2_min);
- set_group(group, 2, point3_min);
- set_group(group, 3, point4_min);
-}
-
-void test_update_center()
-{
- mln::clustering::k_mean<SIZE_SAMPLE2, NB_CENTER, DIM_POINT, TYPE_POINT> kmean;
-
- const mln::value::rgb8 lime = mln::literal::lime;
- const mln::value::rgb8 brown = mln::literal::brown;
- const mln::value::rgb8 teal = mln::literal::teal;
- const mln::value::rgb8 purple = mln::literal::purple;
- const mln::value::rgb8 c1 = lime;
- const mln::value::rgb8 c2 = purple;
- const unsigned pt1_min = 0; // lime near lime (c1)
- const unsigned pt2_min = 1; // brown near purple (c2)
- const unsigned pt3_min = 1; // teal near purple (c2)
- const unsigned pt4_min = 1; // purple near purple (c2)
- const mln::value::rgb8 mean_c1 = lime;
- const mln::value::rgb8 mean_c2 = (brown+teal+purple)/3;
-
- fake_init_point(kmean.get_point(), lime, brown, teal, purple);
- fake_init_center(kmean.get_center(), c1, c2);
- fake_update_distance(kmean.get_distance(), lime, brown, teal, purple, c1, c2);
- fake_update_group(kmean.get_group(), pt1_min, pt2_min, pt3_min, pt4_min);
- kmean.update_center();
-
- mln_assertion(is_equal(mean_c1, kmean.get_center(), 0));
- mln_assertion(is_equal(mean_c2, kmean.get_center(), 1));
-
- std::cout << "Test update center : ok" << std::endl;
-}
-
-void test_update_variance()
-{
- mln::clustering::k_mean<SIZE_SAMPLE2, NB_CENTER, DIM_POINT, TYPE_POINT> kmean;
-
- const mln::value::rgb8 lime = mln::literal::lime;
- const mln::value::rgb8 brown = mln::literal::brown;
- const mln::value::rgb8 teal = mln::literal::teal;
- const mln::value::rgb8 purple = mln::literal::purple;
- const mln::value::rgb8 c1 = lime;
- const mln::value::rgb8 c2 = purple;
- const unsigned pt1_min = 0; // lime near lime (c1)
- const unsigned pt2_min = 1; // brown near purple (c2)
- const unsigned pt3_min = 1; // teal near purple (c2)
- const unsigned pt4_min = 1; // purple near purple (c2)
- const double v1 = 0;
- const double v2 = dist(purple, brown) + dist(purple, teal);
- const mln::value::rgb8 mean_c2 = (brown+teal+purple)/3;
- const VEC_VAR& var = kmean.get_variance();
-
- fake_init_point(kmean.get_point(), lime, brown, teal, purple);
- fake_init_center(kmean.get_center(), c1, c2);
- fake_update_distance(kmean.get_distance(), lime, brown, teal, purple, c1, c2);
- fake_update_group(kmean.get_group(), pt1_min, pt2_min, pt3_min, pt4_min);
- kmean.update_variance();
-
- mln_assertion(v1 == var[0]);
- mln_assertion(v2 == var[1]);
-
- std::cout << "Test update variance : ok" << std::endl;
-}
-
-void test_loop()
-{
- typedef mln::value::rgb8 rgb8;
- mln::image2d<rgb8> img_ref;
-
- mln::clustering::k_mean<SIZE_SAMPLE1, NB_CENTER, DIM_POINT, TYPE_POINT> kmean;
-
- mln::io::ppm::load(img_ref, "/usr/local/share/olena/images/lena.ppm");
- //mln::io::ppm::save(img_ref, "verif.ppm");
-
- fill_image_with_4colors(img_ref);
- kmean.init_point(img_ref);
-
- kmean.loop(img_ref);
-
-
- // std::cout << "Test update variance: ok" << std::endl;
-}
-
-
-int main()
-{
- //test_instantiation();
- //test_init_point();
- //test_init_center();
- //test_update_distance();
- //test_update_group();
- //test_update_center();
- //test_update_variance();
-
- // mln::trace::quiet = false;
-
- test_loop();
-
- return 0;
-}
diff --git a/trunk/milena/sandbox/green/k_mean/k_mean.hh
b/trunk/milena/sandbox/green/k_mean/k_mean.hh
deleted file mode 100644
index db3f34c..0000000
--- a/trunk/milena/sandbox/green/k_mean/k_mean.hh
+++ /dev/null
@@ -1,672 +0,0 @@
-// Copyright (C) 2007 EPITA Research and Development Laboratory (LRDE)
-// Copyright (C) 2008 EPITA Research and Development Laboratory (LRDE)
-// Copyright (C) 2009 EPITA Research and Development Laboratory (LRDE)
-//
-// This file is part of Olena.
-//
-// Olena is free software: you can redistribute it and/or modify it under
-// the terms of the GNU General Public License as published by the Free
-// Software Foundation, version 2 of the License.
-//
-// Olena is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// General Public License for more details.
-//
-// You should have received a copy of the GNU General Public License
-// along with Olena. If not, see <http://www.gnu.org/licenses/>.
-//
-// As a special exception, you may use this file as part of a free
-// software project without restriction. Specifically, if other files
-// instantiate templates or use macros or inline functions from this
-// file, or you compile this file and link it with other files to produce
-// an executable, this file does not by itself cause the resulting
-// executable to be covered by the GNU General Public License. This
-// exception does not however invalidate any other reasons why the
-// executable file might be covered by the GNU General Public License.
-
-#ifndef MLN_CLUSTERING_K_MEAN_HH
-#define MLN_CLUSTERING_K_MEAN_HH
-
-/// \file
-///
-/// \brief Implements the K MEAN algorithm.
-/// DO
-/// - ASSIGNEMENT STEP
-/// - UPDATE STEP
-/// LOOP UNTIL CONVERGENCE
-///
-/// ASSIGNEMENT STEP
-/// BEGIN
-/// - COMPUTE THE DISTANCE MATRIX FROM POINTS TO CENTERS
-/// - COMPUTE GROUP MATRIX WHERE EACH POINT IS ASSIGNED TO NEAREST CENTER
-/// END
-///
-/// UPDATE STEP
-/// BEGIN
-/// - COMPUTE THE MEAN OF THE GROUPS WHICH ARE THE NEW CENTERS
-/// END
-
-#include <limits.h>
-#include <iostream>
-#include <mln/trace/entering.hh>
-#include <mln/trace/exiting.hh>
-
-#include <mln/core/contract.hh>
-#include <mln/trait/value_.hh>
-
-#include <mln/algebra/mat.hh>
-#include <mln/algebra/vec.hh>
-
-#include <mln/math/min.hh>
-#include <mln/norm/l2.hh>
-
-#include <mln/core/concept/image.hh>
-#include <mln/core/macros.hh>
-
-namespace mln
-{
-
- namespace clustering
- {
-
- // Forward declaration.
- template <unsigned n, unsigned k, unsigned p, typename T>
- struct k_mean;
-
- } // end of namespace mln::clustering
-
- namespace clustering
- {
-
- //
- // PARAM : DIM VECTOR, NUMBER OF CLASSES
- // INPUT : MATRIX 1..N (SAMPLE)
- // WORK
- //
-
- // n is the size of the sample.
- // k is the number of centers.
- // p is the number of attributes for a point.
- // T is the type for computations.
- template <unsigned n, unsigned k, unsigned p, typename T>
- struct k_mean
- {
-
- //------------------------------------------------------------------------
- // Constructor and destructor
- //------------------------------------------------------------------------
-
- k_mean();
- ~k_mean();
-
-
- //------------------------------------------------------------------------
- // Accessors
- //------------------------------------------------------------------------
-
- algebra::mat<n, p, T>& get_point();
- algebra::mat<k, p, T>& get_center();
- algebra::mat<n, k, T>& get_distance();
- algebra::mat<n, k, T>& get_group();
- algebra::vec<k, T>& get_variance();
-
-
- //------------------------------------------------------------------------
- // Tools
- //------------------------------------------------------------------------
-
-
- /// \brief Return the euclidian distance beetween vector x and vector y.
- ///
- /// Compute the f$\sqrt(\sum_{i=0}^P ((x_i - y_i)^2)$f
- ///
- /// \param[in] x a vector of dimension 1xP.
- /// \param[in] y a second vector of dimension 1xP.
- /// \return the distance between x and y.
-
- mln_sum_product(T,T) euclidian_distance(const algebra::vec<p,T>& x,
- const algebra::vec<p,T>& y) const;
-
- /// \brief Return the ith column.
- ///
- /// \param[in] m a matrix of dimension {N or K}xP.
- /// \return the ith column as a vector of dimension 1xP.
-
-
- /// \brief Return the ith column.
- ///
- /// \param[in] m a matrix of dimension {N or K}xP.
- /// \return the ith column as a vector of dimension 1xP.
- template <unsigned q, unsigned r>
- algebra::vec<q,T> col(const algebra::mat<r, q, T>& m,
- const unsigned _col) const;
-
- template <unsigned q, unsigned r>
- algebra::vec<q,T>* ptr_col(const algebra::mat<r, q, T>& m,
- const unsigned _col) const;
-
- template <unsigned q, unsigned r>
- algebra::vec<r,T> row(const algebra::mat<r, q, T>& m,
- const unsigned _row) const;
-
- template <unsigned q, unsigned r>
- void div_col(algebra::mat<r, q, T>& m,
- const unsigned _col,
- const T value);
-
- template <unsigned q, unsigned r>
- mln_sum(T) sum_row(const algebra::mat<r, q, T>& m,
- const unsigned _row) const;
-
- template <unsigned q, typename M>
- M min_col(const algebra::vec<q, M>& x) const;
-
-
- //------------------------------------------------------------------------
- // Initializations of points and centers
- //------------------------------------------------------------------------
-
- /// \brief Initialize the matrix _point with the pixels of an image.
- ///
- /// \param[in] input an image which contains the data points.
- template <typename I>
- void init_point(const Image<I>& _input);
- void init_center();
-
-
- //------------------------------------------------------------------------
- // Computations of distance, group, center, within variance
- //------------------------------------------------------------------------
-
- void update_distance();
- void update_group();
- void update_center();
- T update_variance();
-
-
- //------------------------------------------------------------------------
- // Main loop
- //------------------------------------------------------------------------
-
- template <typename I>
- void loop(const Image<I>& _input);
- //void loop();
-
- private:
- static const unsigned watch_dog = 100;
-
- /// \brief _points contains the concatenation of every data points.
- ///
- /// One data point is a vector 1xP where P is the number of attributes.
- /// _points is a matrix NxP where N is the number of data points.
- algebra::mat<n, p, T>* _point;
-
- /// \brief _distance contains all the euclidian distances between points
- /// and the centers.
- ///
- /// _distance is a matrix NxK where N is the number of data points and
- /// K the number of centers.
- algebra::mat<n, k, mln_sum_product(T,T)>* _distance;
-
- /// \brief _group contains the point assignement to one center.
- ///
- /// _group is a boolean matrix NxK where N is the number of data points
- /// and K the number of centers.
- algebra::mat<n, k, T>* _group;
-
- /// \brief _center contains the coordonnate of the K centers.
- ///
- /// _center is a matrix KxP where K is the number of centers and P is the
- /// number of attributes.
- algebra::mat<k, p, T>* _center;
-
- algebra::vec<k, T>* _variance;
- };
-
-#ifndef MLN_INCLUDE_ONLY
-
- //--------------------------------------------------------------------------
- // Constructor and destructor
- //--------------------------------------------------------------------------
-
- template <unsigned n, unsigned k, unsigned p, typename T>
- inline
- k_mean<n,k,p,T>::k_mean()
- {
- trace::entering("mln::clustering::k_mean::k_mean");
-
- _point = new algebra::mat<n, p, T>();
- _distance = new algebra::mat<n, k, mln_sum_product(T,T)>();
- _group = new algebra::mat<n, k, T>();
- _center = new algebra::mat<k, p, T>();
- _variance = new algebra::vec<k,T>();
-
- mln_postcondition(_point != 0);
- mln_postcondition(_distance != 0);
- mln_postcondition(_group != 0);
- mln_postcondition(_center != 0);
- mln_postcondition(_variance != 0);
-
- trace::exiting("mln::clustering::k_mean::k_mean");
- }
-
- template <unsigned n, unsigned k, unsigned p, typename T>
- inline
- k_mean<n,k,p,T>::~k_mean()
- {
- trace::entering("mln::clustering::k_mean::~k_mean");
-
- delete _point;
- delete _distance;
- delete _group;
- delete _center;
- delete _variance;
-
- trace::exiting("mln::clustering::k_mean::~k_mean");
- }
-
- //--------------------------------------------------------------------------
- // Accessors
- //--------------------------------------------------------------------------
-
- template <unsigned n, unsigned k, unsigned p, typename T>
- inline
- algebra::mat<n, p, T>&
- k_mean<n,k,p,T>::get_point()
- {
- trace::entering("mln::clustering::k_mean::get_point");
- trace::exiting("mln::clustering::k_mean::get_point");
-
- return *_point;
- }
-
- template <unsigned n, unsigned k, unsigned p, typename T>
- inline
- algebra::mat<k, p, T>&
- k_mean<n,k,p,T>::get_center()
- {
- trace::entering("mln::clustering::k_mean::get_center");
- trace::exiting("mln::clustering::k_mean::get_center");
-
- return *_center;
- }
-
- template <unsigned n, unsigned k, unsigned p, typename T>
- inline
- algebra::mat<n, k, T>&
- k_mean<n,k,p,T>::get_distance()
- {
- trace::entering("mln::clustering::k_mean::get_distance");
- trace::exiting("mln::clustering::k_mean::get_distance");
-
- return *_distance;
- }
-
- template <unsigned n, unsigned k, unsigned p, typename T>
- inline
- algebra::mat<n, k, T>&
- k_mean<n,k,p,T>::get_group()
- {
- trace::entering("mln::clustering::k_mean::get_group");
- trace::exiting("mln::clustering::k_mean::get_group");
-
- return *_group;
- }
-
- template <unsigned n, unsigned k, unsigned p, typename T>
- inline
- algebra::vec<k, T>&
- k_mean<n,k,p,T>::get_variance()
- {
- trace::entering("mln::clustering::k_mean::get_variance");
- trace::exiting("mln::clustering::k_mean::get_variance");
-
- return *_variance;
- }
-
- //--------------------------------------------------------------------------
- // Tools
- //--------------------------------------------------------------------------
-
- template <unsigned n, unsigned k, unsigned p, typename T>
- template <unsigned q, unsigned r>
- inline
- algebra::vec<r, T> k_mean<n,k,p,T>::row(const algebra::mat<r, q,
T>& m,
- const unsigned _row) const
- {
- trace::entering("mln::clustering::k_mean::row");
- mln_precondition(q > _row);
-
- algebra::vec<r, T> result;
-
- for (unsigned i = 0; i < r; ++i)
- result[i] = m(i, _row);
-
- trace::exiting("mln::clustering::k_mean::row");
- return result;
- }
-
- template <unsigned n, unsigned k, unsigned p, typename T>
- template <unsigned q, unsigned r>
- inline
- algebra::vec<q,T> k_mean<n,k,p,T>::col(const algebra::mat<r, q,
T>& m,
- const unsigned _col) const
- {
- trace::entering("mln::clustering::k_mean::col");
- mln_precondition(r > _col);
-
- algebra::vec<q, T> result;
-
- for (unsigned j = 0; j < q; ++j)
- result[j] = m(_col, j);
-
- trace::exiting("mln::clustering::k_mean::col");
- return result;
- }
-
- template <unsigned n, unsigned k, unsigned p, typename T>
- template <unsigned q, unsigned r>
- inline
- algebra::vec<q,T>* k_mean<n,k,p,T>::ptr_col(const algebra::mat<r, q,
T>& m,
- const unsigned _col) const
- {
- trace::entering("mln::clustering::k_mean::ptr_col");
- mln_precondition(r > _col);
-
- algebra::vec<q, T> *result = new algebra::vec<q, T>();
-
- for (unsigned j = 0; j < q; ++j)
- (*result)[j] = m(_col, j);
-
- trace::exiting("mln::clustering::k_mean::ptr_col");
- return result;
- }
-
- template <unsigned n, unsigned k, unsigned p, typename T>
- template <unsigned q, unsigned r>
- inline
- mln_sum(T) k_mean<n,k,p,T>::sum_row(const algebra::mat<r, q, T>& m,
- const unsigned _row) const
- {
- trace::entering("mln::clustering::k_mean::sum_row");
- mln_precondition(q > _row);
-
- mln_sum(T) result;
-
- for (unsigned j = 0; j < r; ++j)
- result += m(j, _row);
-
- trace::exiting("mln::clustering::k_mean::sum_row");
- return result;
- }
-
- template <unsigned n, unsigned k, unsigned p, typename T>
- template <unsigned q, unsigned r>
- inline
- void k_mean<n,k,p,T>::div_col(algebra::mat<r, q, T>& m,
- const unsigned _col,
- const T value)
- {
- trace::entering("mln::clustering::k_mean::div_col");
- mln_precondition(r > _col);
-
- for (unsigned j = 0; j < q; ++j)
- m(_col, j) /= value;
-
- trace::exiting("mln::clustering::k_mean::div_col");
- }
-
- template <unsigned n, unsigned k, unsigned p, typename T>
- template <unsigned q, typename M>
- inline
- M k_mean<n,k,p,T>::min_col(const algebra::vec<q, M>& x) const
- {
- trace::entering("mln::clustering::k_mean<n,k,p,T>::min_col");
-
- M result = x[0];
-
- for (unsigned i = 1; i < q; ++i)
- result = math::min(result, x[i]);
-
- trace::exiting("mln::clustering::k_mean<n,k,p,T>::min_col");
- return result;
- }
-
- template <unsigned n, unsigned k, unsigned p, typename T>
- inline
- mln_sum_product(T,T)
- k_mean<n,k,p,T>::euclidian_distance(const algebra::vec<p, T>& x,
- const algebra::vec<p, T>& y) const
- {
- trace::entering("mln::clustering::k_mean::euclidian_distance");
- //vec<p, double> tmp = norm::l2(x - y);
- const algebra::vec<p, double> tmp = (x - y);
- mln_sum_product(T,T) result = tmp*tmp;
-
- trace::exiting("mln::clustering::k_mean::euclidian_distance");
- return result;
- }
-
-
- //--------------------------------------------------------------------------
- // Initializations of points and centers
- //--------------------------------------------------------------------------
-
- template <unsigned n, unsigned k, unsigned p, typename T>
- template <typename I>
- inline
- void k_mean<n,k,p,T>::init_point(const Image<I>& _input)
- {
- trace::entering("mln::clustering::k_mean<n,k,p,T>::init");
-
- const I& input = exact(_input);
- algebra::mat<n, p, T>& point = *_point;
-
- mln_precondition(input.is_valid());
- mln_precondition(n == input.nrows() * input.ncols());
- //mln_precondition(n == input.nrows());
- //mln_precondition(n == input.nrows() * input.ncols() * input.nslices());
-
- mln_piter(I) pi(input.domain());
- unsigned i = -1;
-
- for_all(pi)
- {
- //std::cout << pi << std::endl;
-
- ++i;
- for (unsigned j = 0; j < p; ++j)
- {
-
- point(i,j) = input(pi).comp(j);
- //point(i,j) = input(pi);
- }
- }
-
- trace::exiting("mln::clustering::k_mean<n,k,p,T>::init");
- }
-
- template <unsigned n, unsigned k, unsigned p, typename T>
- inline
- void k_mean<n,k,p,T>::init_center()
- {
- trace::entering("mln::clustering::k_mean<n,k,p,T>::init_center");
-
- algebra::mat<n, p, T>& point = *_point;
- algebra::mat<k, p, T>& center = *_center;
-
- // A random point is choosen to be the initial value for a center.
- for (unsigned i = 0; i < k; ++i)
- {
- unsigned random = rand() % n;
-
- for (unsigned j = 0; j < p; ++j)
- {
- center(i,j) = point(random, j);
- }
-
- //std::cout << "center(" << i << ")" <<
col(center, i) << std::endl;
- }
-
- trace::exiting("mln::clustering::k_mean<n,k,p,T>::init_center");
- }
-
-
- //--------------------------------------------------------------------------
- // Computations of distance, group, center, within variance
- //--------------------------------------------------------------------------
-
- template <unsigned n, unsigned k, unsigned p, typename T>
- inline
- void k_mean<n,k,p,T>::update_distance()
- {
- trace::entering("mln::clustering::k_mean::update_distance");
- //mln::trace::quiet = true;
-
- // the result is stored in _distance matrix.
- algebra::mat<n, p, T>& point = *_point;
- algebra::mat<n, k, T>& distance = *_distance;
- algebra::mat<k, p, T>& center = *_center;
-
- // for all points in the data cloud.
- for (unsigned i = 0; i < n; ++i)
- {
- // for every center
- for (unsigned j = 0; j < k; ++j)
- {
- distance(i,j) = euclidian_distance(col(point,i),col(center,j));
- }
- }
- //mln::trace::quiet = false;
- trace::exiting("mln::clustering::k_mean::update_distance");
- }
-
- template <unsigned n, unsigned k, unsigned p, typename T>
- inline
- void k_mean<n,k,p,T>::update_group()
- {
- trace::entering("mln::clustering::k_mean<n,k,p,T>::update_group");
-
- algebra::mat<n, k, mln_sum_product(T,T)>& distance = *_distance;
- algebra::mat<n, k, T>& group = *_group;
-
- // for each point
- for (unsigned i = 0; i < n; ++i)
- {
- // tell us the minimum distance from a specific point to a group
- mln_sum_product(T,T) min_dist = min_col(col(distance, i));
-
- // for each center
- for (unsigned j = 0; j < k; ++j)
- group(i,j) = (min_dist == distance(i,j))? 1.0 : 0.0;
- }
-
- // mln_postcondition(sum(col(distance(i,j)) == 1) Vi
- trace::exiting("mln::clustering::k_mean<n,k,p,T>::update_group");
- }
-
- template <unsigned n, unsigned k, unsigned p, typename T>
- inline
- void k_mean<n,k,p,T>::update_center()
- {
-
trace::entering("mln::clustering::k_mean<n,k,p,T>::update_center");
-
- algebra::mat<n, p, T>& point = *_point;
- algebra::mat<k, p, T>& center = *_center;
- algebra::mat<n, k, T>& group = *_group;
-
- // center = (group.t() * point);
-
- for (unsigned i = 0; i < k; ++i)
- {
- for (unsigned j = 0; j < p; ++j)
- {
- center(i,j) = literal::zero;
-
- for (unsigned l = 0; l < n; ++l)
- center(i,j) += group(l,i) * point(l,j);
- }
- }
-
- for (unsigned i = 0; i < k; ++i)
- div_col(center, i, sum_row(group, i));
-
- trace::exiting("mln::clustering::k_mean<n,k,p,T>::update_center");
- }
-
- template <unsigned n, unsigned k, unsigned p, typename T>
- inline
- T k_mean<n,k,p,T>::update_variance()
- {
-
trace::entering("mln::clustering::k_mean<n,k,p,T>::update_variance");
-
- algebra::vec<k, T>& variance = *_variance;
- algebra::mat<n, k, T>& distance = *_distance;
- algebra::mat<n, k, T>& group = *_group;
- T result = literal::zero;
-
- // for every group
- for (unsigned i = 0; i < k; ++i)
- {
- variance[i] = row(group, i) * row(distance, i);
- result += variance[i];
- }
-
-
trace::exiting("mln::clustering::k_mean<n,k,p,T>::update_variance");
- return result;
- }
-
-
- //--------------------------------------------------------------------------
- // Main loop
- //--------------------------------------------------------------------------
-
- template <unsigned n, unsigned k, unsigned p, typename T>
- template <typename I>
- inline
- void k_mean<n,k,p,T>::loop(const Image<I>& _input)
- //void k_mean<n,k,p,T>::loop()
- {
- trace::entering("mln::clustering::k_mean<n,k,p,T>::loop");
-
- T within_variance = INT_MAX-1;
- T old_variance = INT_MAX;
-
- init_point(_input);
- init_center();
-
- std::cout << "LOOP" << std::endl;
-
- for (unsigned i = 0; i < watch_dog && within_variance < old_variance;
++i)
- {
- update_distance();
-
- std::cout << "DISTANCE DONE" << std::endl;
-
- update_group();
-
- std::cout << "GROUP DONE" << std::endl;
-
- update_center();
-
- std::cout << "UPDATE CENTER DONE" << std::endl;
-
- old_variance = within_variance;
- within_variance = update_variance();
-
- std::cout << i << " : " << within_variance <<
std::endl;
- }
-
- trace::exiting("mln::clustering::k_mean<n,k,p,T>::loop");
- }
-
-
-
-#endif // ! MLN_INCLUDE_ONLY
-
- } // end of namespace mln::clustering
-
-} // end of namespace mln::clustering
-
-#endif // ! MLN_CLUSTERING_K_MEAN_HH
--
1.5.6.5