Optimize regional maxima processing for statistical counts and outputs.
* green/demo/labeling/regional_maxima/Makefile.am: Add some compilation
directives.
* green/demo/labeling/regional_maxima/regional_maxima.cc
(t_channel,t_labeling_rgbn,label_image,unquant,print_count2): New.
* green/demo/labeling/regional_maxima/regional_maxima.cc
(print_count, merge, do_demo) : Update.
---
milena/sandbox/ChangeLog | 14 +-
.../demo/labeling/regional_maxima/Makefile.am | 2 +
.../labeling/regional_maxima/regional_maxima.cc | 661 ++++++++++++++------
3 files changed, 471 insertions(+), 206 deletions(-)
diff --git a/milena/sandbox/ChangeLog b/milena/sandbox/ChangeLog
index 37cce8a..aed61bf 100644
--- a/milena/sandbox/ChangeLog
+++ b/milena/sandbox/ChangeLog
@@ -1,9 +1,21 @@
2009-12-02 Yann Jacquelet <jacquelet(a)lrde.epita.fr>
+ Optimize regional maxima processing for statistical counts and outputs.
+
+ * green/demo/labeling/regional_maxima/Makefile.am: Add some compilation
+ directives.
+ * green/demo/labeling/regional_maxima/regional_maxima.cc
+ (t_channel,t_labeling_rgbn,label_image,unquant,print_count2): New.
+ * green/demo/labeling/regional_maxima/regional_maxima.cc
+ (print_count, merge, do_demo) : Update.
+
+
+2009-12-02 Yann Jacquelet <jacquelet(a)lrde.epita.fr>
+
Test experimentation with regmax code on annoting database.
* green/exp/labeling/regional_maxima/Makefile.am: New Makefile.
- * green/exp/clustering/regional_maxima/regional_maxima.cc: New directory
+ * green/exp/labeling/regional_maxima/regional_maxima.cc: New directory
oriented demonstration code.
2009-12-02 Yann Jacquelet <jacquelet(a)lrde.epita.fr>
diff --git a/milena/sandbox/green/demo/labeling/regional_maxima/Makefile.am
b/milena/sandbox/green/demo/labeling/regional_maxima/Makefile.am
index 91230b6..1dd1cfb 100644
--- a/milena/sandbox/green/demo/labeling/regional_maxima/Makefile.am
+++ b/milena/sandbox/green/demo/labeling/regional_maxima/Makefile.am
@@ -8,6 +8,8 @@
INCLUDES= -I$(HOME)/svn/oln/trunk/milena/sandbox/green
CXXFLAGS= -ggdb -O0 -Wall -W -pedantic -ansi -pipe $(INCLUDES)
+#CXXFLAGS= -DNDEBUG -O1 -Wall -W -pedantic -ansi -pipe $(INCLUDES)
+#CXXFLAGS= -DNDEBUG -O3 -Wall -W -pedantic -ansi -pipe $(INCLUDES)
ECHO= echo
RM= rm
MKDIR= mkdir -p
diff --git a/milena/sandbox/green/demo/labeling/regional_maxima/regional_maxima.cc
b/milena/sandbox/green/demo/labeling/regional_maxima/regional_maxima.cc
index 34801ed..266fbfe 100644
--- a/milena/sandbox/green/demo/labeling/regional_maxima/regional_maxima.cc
+++ b/milena/sandbox/green/demo/labeling/regional_maxima/regional_maxima.cc
@@ -1,66 +1,257 @@
// DEMO ON REGIONAL MAXIMA
-#include <mln/clustering/kmean2d.hh>
-
#include <iostream>
#include <sstream>
#include <mln/img_path.hh>
-#include <mln/pw/value.hh>
-#include <mln/value/label_8.hh>
-#include <mln/value/rgb8.hh>
+#include <mln/accu/math/sum.hh>
+#include <mln/accu/stat/histo3d_rgb.hh>
+#include <mln/accu/stat/mean.hh>
+#include <mln/accu/stat/variance.hh>
+
+#include <mln/algebra/vec.hh>
+
+// #include <mln/arith/revert.hh>
+#include <mln/arith/diff_abs.hh>
#include <mln/core/macros.hh>
+#include <mln/core/alias/neighb3d.hh>
#include <mln/core/image/image2d.hh>
#include <mln/core/image/image3d.hh>
+#include <mln/core/routine/initialize.hh>
+#include <mln/data/compute.hh>
+#include <mln/data/fill.hh>
+// #include <mln/data/stretch.hh>
#include <mln/data/transform.hh>
+
+// #include <mln/display/display_histo.hh>
+
#include <mln/fun/v2v/rgb8_to_rgbn.hh>
-#include <mln/io/ppm/load.hh>
#include <mln/io/pgm/load.hh>
#include <mln/io/pgm/save.hh>
+#include <mln/io/ppm/load.hh>
#include <mln/io/ppm/save.hh>
-#include <mln/io/plot/save_image_sh.hh>
-
-#include <mln/accu/stat/histo3d_rgb.hh>
-#include <mln/data/compute.hh>
+// #include <mln/io/plot/save_image_sh.hh>
-#include <mln/arith/revert.hh>
#include <mln/labeling/regional_maxima.hh>
-#include <mln/core/alias/neighb3d.hh>
-#include <mln/core/routine/initialize.hh>
+#include <mln/labeling/mean_values.hh>
+#include <mln/labeling/compute.hh>
+
#include <mln/literal/colors.hh>
-#include <mln/morpho/watershed/flooding.hh>
+
+// #include <mln/morpho/watershed/flooding.hh>
#include <mln/morpho/opening/volume.hh>
#include <mln/morpho/elementary/dilation.hh>
-#include <mln/data/stretch.hh>
-#include <mln/display/display_histo.hh>
-#include <mln/labeling/mean_values.hh>
+#include <mln/opt/at.hh>
+
+// #include <mln/pw/value.hh>
+
+#include <mln/util/array.hh>
+#include <mln/util/timer.hh>
+
+#include <mln/value/label_8.hh>
+#include <mln/value/rgb8.hh>
+#include <mln/value/rgb.hh>
+#include <mln/value/int_u.hh>
+
+
+template <unsigned n, unsigned ch>
+struct t_channel : mln::Function_v2v< t_channel<n,ch> >
+{
+ typedef mln::value::rgb<n> t_rgbn;
+ typedef mln::value::int_u<n> t_int_un;
+ typedef t_rgbn argument;
+ typedef t_int_un result;
+
+ result operator()(const argument& c) const
+ {
+ result tmp;
+
+ switch(ch)
+ {
+ case 0: tmp = c.red(); break;
+ case 1: tmp = c.green(); break;
+ case 2: tmp = c.blue(); break;
+ }
+
+ return tmp;
+ }
+};
+
+
+// version optimisée de labeling
+
+template <unsigned n>
+struct t_labeling_rgbn : mln::Function_v2v< t_labeling_rgbn<n> >
+{
+ typedef mln::value::rgb<n> t_rgbn;
+ typedef mln::value::label_8 t_lbl8;
+ typedef t_rgbn argument;
+ typedef t_lbl8 result;
+ typedef mln::image3d<t_lbl8> t_label;
+
+ const t_label& _label;
+
+ t_labeling_rgbn(const t_label& label) : _label(label) {}
+
+ result operator()(const argument& c) const
+ {
+ t_lbl8 tmp = mln::opt::at(_label, c.blue(), c.red(), c.green());
+
+ return tmp;
+ }
+};
+
+// version non optimisée de label
+
+template <unsigned n>
mln::image2d<mln::value::label_8>
-label_image(const mln::image2d<mln::value::rgb<5> >& input,
- const mln::image3d<mln::value::label_8>& label)
+label_image(const mln::image2d< mln::value::rgb<n> >& input,
+ const mln::image3d< mln::value::label_8>& label)
{
- mln::image2d<mln::value::label_8> output(input.nrows(),
- input.ncols());
+ mln::image2d<mln::value::label_8> output;
+
+ initialize(output, input);
- mln_piter_(mln::image2d<mln::value::label_8>) po(output.domain());
- mln_piter_(mln::image2d<mln::value::rgb<5> >) pi(input.domain());
+ mln_piter(mln::image2d< mln::value::label_8 >) po(output.domain());
+ mln_piter(mln::image2d< mln::value::rgb<n> >) pi(input.domain());
for_all_2(po, pi)
{
- output(po) = label(mln::point3d(input(pi).blue(),
- input(pi).red(),
- input(pi).green()));
+ const mln::value::rgb<n>& vi = input(pi);
+
+ output(po) = mln::opt::at(label, vi.blue(), vi.red(), vi.green());
}
return output;
}
+template <unsigned n>
+unsigned unquant(const float& value)
+{
+ unsigned size = pow(2,(8-n));
+ unsigned result = value * size;
+
+ return result;
+}
+
+template <unsigned n>
+void print_count2(const mln::image2d<mln::value::rgb<n> >& input_rgbn,
+ const mln::image3d<unsigned>& histo,
+ const mln::image3d<mln::value::label_8>& label,
+ const unsigned n_labels)
+{
+ typedef mln::value::label_8 t_lbl8;
+ typedef mln::value::rgb<n> t_rgbn;
+ typedef mln::value::int_u<n> t_int_un;
+ typedef mln::algebra::vec<3,float> t_vec3f;
+ typedef mln::accu::math::sum<unsigned,unsigned> t_sum;
+ typedef mln::accu::stat::mean<t_vec3f,t_vec3f,t_vec3f> t_mean;
+ typedef mln::accu::math::sum<t_vec3f,t_vec3f> t_diff;
+ typedef mln::accu::stat::variance<float,float,float> t_var;
+ typedef mln::image2d<t_lbl8> t_image2d_lbl8;
+ typedef mln::image2d<t_rgbn> t_image2d_rgbn;
+ typedef mln::image2d<t_int_un> t_image2d_int_un;
+
+ mln::util::array<t_mean> mean((unsigned)(n_labels)+1);
+// mln::util::array<t_diff> diff((unsigned)(n_labels)+1);
+ mln::util::array<t_var> var_red((unsigned)(n_labels)+1);
+ mln::util::array<t_var> var_green((unsigned)(n_labels)+1);
+ mln::util::array<t_var> var_blue((unsigned)(n_labels)+1);
+ mln::util::array<t_sum> count((unsigned)(n_labels)+1);
+ mln::util::array<float> abs((unsigned)(n_labels)+1);
+ mln::util::array<float> rel((unsigned)(n_labels)+1);
+ unsigned nb = 0;
+
+ for (unsigned i = 0; i <= n_labels; ++i)
+ {
+ count(i).init();
+ mean(i).init();
+// diff(i).init();
+ var_red(i).init();
+ var_green(i).init();
+ var_blue(i).init();
+ abs[i] = 0.0;
+ rel[i] = 0.0;
+ }
+
+ mln::labeling::compute(count, histo, label, n_labels);
+
+ for (unsigned i = 0; i <= n_labels; ++i)
+ {
+ unsigned c = count[i];
+ nb += c;
+ }
+
+ for (unsigned i = 0; i <= n_labels; ++i)
+ if (0 < count[i])
+ {
+ abs[i] = ((float)count[i] / nb)*100.0;
+ rel[i] = ((float)count[i] / (nb - count[0]))*100.0;
+ }
+
+ t_image2d_lbl8 label_img = mln::data::transform(input_rgbn,
+ t_labeling_rgbn<n>(label));
+
+ mln::labeling::compute(mean, input_rgbn, label_img, n_labels);
+
+
+// t_image2d_rgbn mean_rgbn = mln::labeling::mean_values(input_rgbn,
+// label_img,
+// n_labels);
+// t_image2d_int_un mean_red =mln::data::transform(mean_rgbn,t_channel<n>());
+// t_image2d_int_un mean_green=mln::data::transform(mean_rgbn,t_channel<n>());
+// t_image2d_int_un mean_blue =mln::data::transform(mean_rgbn,t_channel<n>());
+
+ t_image2d_int_un input_red =mln::data::transform(input_rgbn,
+ t_channel<n,0>());
+ t_image2d_int_un input_green=mln::data::transform(input_rgbn,
+ t_channel<n,1>());
+ t_image2d_int_un input_blue =mln::data::transform(input_rgbn,
+ t_channel<n,2>());
+
+// FIXME VARIANCE NEGATIVE DANS LES RESULTATS !!
+
+// mln::labeling::compute(var_red, input_rgbn, label_img, n_labels);
+// mln::labeling::compute(var_green, input_rgbn, label_img, n_labels);
+// mln::labeling::compute(var_blue, input_rgbn, label_img, n_labels);
+
+// t_image2d_rgbn diff_rgbn = mln::arith::diff_abs(input_rgbn, mean_rgbn);
+
+ std::cout << mln::labeling::compute(var_red, input_red, label_img,
n_labels)(29) << std::endl;
+// mln::labeling::compute(t_var(), input_red, label_img, n_labels);
+ mln::labeling::compute(var_green, input_green, label_img, n_labels);
+ mln::labeling::compute(var_blue, input_blue, label_img, n_labels);
+
+ for (unsigned i = 0; i <= n_labels; ++i)
+ {
+ if (5.0 < abs[i] && 10.0 < rel[i])
+ {
+ const t_vec3f& mean_v = mean[i];
+// const t_vec3f& diff_v = diff[i];
+
+ std::cout << i << " :[" << unquant<n>(mean_v[0])
+// << "(" << diff_v[0]
+ << "(" << var_red[i]
+ << ")," << unquant<n>(mean_v[1])
+// << "(" << diff_v[1]
+ << "(" << var_green[i]
+ << ")," << unquant<n>(mean_v[2])
+// << "(" << diff_v[2]
+ << "(" << var_blue[i]
+ << ")]- " << count[i]
+ << " - " << abs[i]
+ << " - " << rel[i]
+ << std::endl;
+ }
+ }
+}
void print_count(const mln::image3d<unsigned>& histo,
const mln::image3d<mln::value::label_8>& label,
@@ -70,66 +261,116 @@ void print_count(const mln::image3d<unsigned>&
histo,
unsigned red[255];
unsigned green[255];
unsigned blue[255];
+ unsigned nb = 0;
+ unsigned tmp = 0;
- for (unsigned i = 0; i < n_labels; ++i)
+ for (unsigned i = 0; i <= n_labels; ++i)
{
count[i] = 0;
- red[i] = 0.0;
- green[i] = 0.0;
- blue[i] = 0.0;
+ red[i] = 0;
+ green[i] = 0;
+ blue[i] = 0;
}
- mln_piter_(mln::image3d<unsigned>) ph(histo.domain());
- mln_piter_(mln::image3d<mln::value::label_8>) pl(label.domain());
+ mln_piter_(mln::image3d<unsigned>) p(histo.domain());
- for_all_2(ph, pl)
+ for_all(p)
{
- count[label(pl)] += histo(ph);
- red[label(pl)] += histo(ph) * pl.row();
- green[label(pl)] += histo(ph) * pl.col();
- blue[label(pl)] += histo(ph) * pl.sli();
+ count[label(p)] += histo(p);
+ red[label(p)] += histo(p) * p.row();
+ green[label(p)] += histo(p) * p.col();
+ blue[label(p)] += histo(p) * p.sli();
+ nb += histo(p);
+ ++tmp;
}
std::cout << std::endl;
- for (unsigned i = 0; i < n_labels; ++i)
- {
- red[i] = red[i] / count[i];
- green[i] = green[i] / count[i];
- blue[i] = blue[i] / count[i];
+ std::cout << "nb : " << nb << std::endl;
+ std::cout << "tmp : " << tmp << std::endl;
- std::cout << "count[" << i << "]("
- << red[i] << ", " << green[i] << ",
"
- << blue[i] << ") = " << count[i] << std::endl;
- }
+ std::cout << std::endl;
+
+ for (unsigned i = 0; i <= n_labels; ++i)
+ if (0 < count[i])
+ {
+ float percentage_abs = ((float)count[i] / nb)*100.0;
+ float percentage_rel = ((float)count[i] / (nb - count[0]))*100.0;
+
+ red[i] = red[i] / count[i];
+ green[i] = green[i] / count[i];
+ blue[i] = blue[i] / count[i];
+
+ std::cout << "count[" << i << "]("
+ << red[i] << ", " << green[i] << ", "
+ << blue[i] << ") = " << count[i] << "("
+ << percentage_abs << "%)";
+
+ if (0 < i)
+ std::cout << "[" << percentage_rel << "%]";
+
+ std::cout << std::endl;
+ }
std::cout << std::endl;
}
-mln::image2d<mln::value::rgb<5> >
-merge(const mln::image2d<mln::value::rgb<5> >& input,
- const mln::image3d<mln::value::label_8>& label)
+// Version optimisée de merge
+
+template <unsigned n>
+struct t_merge_lbl8_with_rgbn : mln::Function_v2v< t_merge_lbl8_with_rgbn<n>
>
{
- mln::image2d<mln::value::rgb<5> > output;
+ typedef mln::value::rgb<n> t_rgbn;
+ typedef mln::value::label_8 t_lbl8;
+ typedef t_rgbn argument;
+ typedef t_rgbn result;
+ typedef mln::image3d<t_lbl8> t_label;
+
+ const t_label& _label;
+
+ t_merge_lbl8_with_rgbn(const t_label& label) : _label(label) {}
+
+ result operator()(const argument& c) const
+ {
+ t_rgbn tmp = c;
+
+ if (0 == mln::opt::at(_label, c.blue(), c.red(), c.green()))
+ {
+ tmp = mln::literal::black;
+ }
+
+ return tmp;
+ }
+};
+
+// version non optimisée de merge
+
+template <unsigned n>
+mln::image2d< mln::value::rgb<n> >
+merge(const mln::image2d< mln::value::rgb<n> >& input,
+ const mln::image3d< mln::value::label_8 >& label)
+{
+ mln::image2d<mln::value::rgb<n> > output;
mln::initialize(output, input);
+ // mln::data::fill(output, mln::literal::green);
- mln_piter_(mln::image2d<mln::value::rgb<5> >) pi(input.domain());
- mln_piter_(mln::image2d<mln::value::rgb<5> >) po(output.domain());
+ mln_piter(mln::image2d< mln::value::rgb<n> >) pi(input.domain());
+ mln_piter(mln::image2d< mln::value::rgb<n> >) po(output.domain());
for_all_2(pi, po)
{
- if (0 < label(mln::point3d(input(pi).blue(),
- input(pi).red(),
- input(pi).green())))
+ const mln::value::rgb<n>& vi = input(pi);
+ mln::value::rgb<n>& vo = output(po);
+
+ if (0 < mln::opt::at(label,vi.blue(),vi.red(),vi.green()))
{
- output(po).red() = input(pi).red();
- output(po).green() = input(pi).green();
- output(po).blue() = input(pi).blue();
+ vo.red() = vi.red();
+ vo.green() = vi.green();
+ vo.blue() = vi.blue();
}
else
- output(po) = mln::literal::red;
- //output(po) = mln::literal::black;
+ vo = mln::literal::black;
}
return output;
@@ -137,78 +378,180 @@ merge(const mln::image2d<mln::value::rgb<5> >&
input,
//
-// Regional maxima image processing chain.
-// RGB8
+// Theo regional maxima image processing chain.
//
-void do_demo(const std::string& image)
+
+// FIXME C'est la dilatation qui fait apparaître des classes < min_volume.
+// Une couleur se dilate au détriment du fond et des autres couleurs.
+
+int main2()
{
+ const unsigned min_volume = 1000;
+ //const std::string& image = OLENA_IMG_PATH"/fly.ppm";
+ const std::string& image = SCRIBO_PPM_IMG_PATH"/mp00082c_50p.ppm";
+ //const std::string& image = OLENA_IMG_PATH"/tiny.ppm";
+
typedef mln::value::label_8 t_lbl8;
- typedef mln::value::int_u8 t_int_u8;
typedef mln::value::rgb8 t_rgb8;
typedef mln::value::rgb<5> t_rgb5;
- typedef mln::image3d<t_lbl8> t_image3d_lbl8;
- typedef mln::image2d<t_lbl8> t_image2d_lbl8;
typedef mln::image2d<t_rgb8> t_image2d_rgb8;
typedef mln::image2d<t_rgb5> t_image2d_rgb5;
- typedef mln::image2d<t_int_u8> t_image2d_int_u8;
- typedef mln::image3d<unsigned> t_histo3d;
- typedef mln::image2d<unsigned> t_histo2d;
- typedef mln::fun::v2v::rgb8_to_rgbn<5> t_rgb8_to_rgbn;
+ typedef mln::image3d<t_lbl8> t_image3d_lbl8;
+ typedef mln::image3d<unsigned> t_image3d_unsigned;
+ typedef mln::fun::v2v::rgb8_to_rgbn<5> t_rgb8_to_rgb5;
typedef mln::accu::meta::stat::histo3d_rgb t_histo3d_fun;
+ typedef mln::accu::math::sum<unsigned,unsigned> t_sum;
+
+ mln::util::timer timer;
+
+ // START IMAGE PROCESSING CHAIN
+ timer.start();
t_image2d_rgb8 input_rgb8;
t_image2d_rgb5 input_rgb5;
- t_image2d_rgb5 output_rgb5;
- t_image2d_rgb5 mean_rgb5;
- t_histo3d histo;
- t_image2d_int_u8 projected;
- t_image2d_int_u8 filtered;
- t_histo3d opened;
+ t_image3d_unsigned histo;
+ t_image3d_unsigned opened;
t_image3d_lbl8 label;
- t_image2d_lbl8 label_img;
t_image3d_lbl8 dilated;
t_lbl8 n_labels;
- t_rgb5 value_rgb5;
- // IMAGE LOADING PHASE
- std::cout << "Image loading phase ..." << std::endl;
mln::io::ppm::load(input_rgb8, image.c_str());
- input_rgb5 = mln::data::transform(input_rgb8, t_rgb8_to_rgbn());
- mln::io::ppm::save(input_rgb5, "input_rgb5.ppm");
+ input_rgb5 = mln::data::transform(input_rgb8, t_rgb8_to_rgb5());
+ histo = mln::data::compute(t_histo3d_fun(), input_rgb5);
+ opened = mln::morpho::opening::volume(histo, mln::c6(), min_volume);
+ label = mln::labeling::regional_maxima(opened, mln::c6(), n_labels);
+ dilated = mln::morpho::elementary::dilation(label, mln::c26());
+
+ mln::util::array<t_sum> length((unsigned)(n_labels)+1);
+
+ for (unsigned i = 0; i <= n_labels; ++i)
+ length(i).init();
+ mln::labeling::compute(length, histo, dilated, n_labels);
- // HISTO COMPUTING PHASE
- std::cout << "Histo computing phase ..." << std::endl;
- histo = mln::data::compute(t_histo3d_fun(), input_rgb5);
- projected = mln::display::display_histo3d_unsigned(histo);
+ timer.stop();
+ // STOP IMAGE PROCESSING CHAIN
+
+ std::cout << "Done in " << timer.read() << " ms"
<< std::endl;
+ std::cout << "n_labels : " << n_labels << std::endl;
+
+ for (unsigned i = 0; i <= n_labels; ++i)
+ {
+ std::cout << "count[" << i << "] = " <<
length[i] << std::endl;
+ }
+
+ print_count(histo,label,n_labels);
- mln::io::pgm::save(projected, "histo.pgm");
//mln::io::plot::save_image_sh(histo, "histo.sh");
+ //mln::io::plot::save_image_sh(histo, "opened.sh");
+ //mln::io::plot::save_image_sh(label, "label.sh");
- // HISTO FILTERING PHASE
- std::cout << "Histo filtering phase ..." << std::endl;;
- opened = mln::morpho::opening::volume(histo, mln::c6(), 1000);
- mln::io::plot::save_image_sh(opened, "opened.sh");
- filtered = mln::display::display_histo3d_unsigned(opened);
- mln::io::pgm::save(filtered, "filtered.pgm");
+ return 0;
+}
+// n < 8, n is the degree of quantification
+template <unsigned n>
+void demo()
+{
+ const unsigned min_volume = 1000;
+ //const std::string& image = OLENA_IMG_PATH"/fly.ppm";
+ const std::string& image = SCRIBO_PPM_IMG_PATH"/mp00082c_50p.ppm";
+ //const std::string& image = OLENA_IMG_PATH"/tiny.ppm";
- // HISTO LABELING PHASE
- std::cout << "Histo labeling phase ..." << std::endl;
- label = mln::labeling::regional_maxima(opened, mln::c6(), n_labels);
- mln::io::plot::save_image_sh(label, "label.sh");
+ typedef mln::value::label_8 t_lbl8;
+ typedef mln::value::int_u8 t_int_u8;
+ typedef mln::value::rgb8 t_rgb8;
+ typedef mln::value::rgb<n> t_rgbn;
+ typedef mln::image3d<t_lbl8> t_image3d_lbl8;
+ typedef mln::image2d<t_lbl8> t_image2d_lbl8;
+ typedef mln::image2d<t_rgb8> t_image2d_rgb8;
+ typedef mln::image2d<t_rgbn> t_image2d_rgbn;
+ typedef mln::image2d<t_int_u8> t_image2d_int_u8;
+ typedef mln::image3d<unsigned> t_histo3d;
+ typedef mln::image2d<unsigned> t_histo2d;
+ typedef mln::fun::v2v::rgb8_to_rgbn<n> t_rgb8_to_rgbn;
+ typedef mln::accu::meta::stat::histo3d_rgb t_histo3d_fun;
+ mln::util::timer timer;
- // HISTO DILATING PHASE
- std::cout << "Histo dilating phase ..." << std::endl;
- dilated = mln::morpho::elementary::dilation(label, mln::c18());
- mln::io::plot::save_image_sh(dilated, "dilated.sh");
+ // START OF IMAGE PROCESSING CHAIN
+ timer.start();
- // PRINTING PHASE
- std::cout << "Labels : " << n_labels << std::endl;
- print_count(histo, dilated, n_labels);
+ t_image2d_rgb8 input_rgb8;
+ t_image2d_rgbn input_rgbn;
+ t_image2d_rgbn output_rgbn;
+ // t_image2d_rgbn mean_rgb5;
+ t_histo3d histo;
+ // t_image2d_int_u8 projected;
+ // t_image2d_int_u8 filtered;
+ t_histo3d opened;
+ t_image3d_lbl8 label;
+ t_image2d_lbl8 label_img;
+ t_image3d_lbl8 dilated;
+ t_lbl8 n_labels;
+ // t_rgbn value_rgbn;
+ mln::io::ppm::load(input_rgb8, image.c_str());
+ input_rgbn = mln::data::transform(input_rgb8, t_rgb8_to_rgbn());
+ histo = mln::data::compute(t_histo3d_fun(), input_rgbn);
+ opened = mln::morpho::opening::volume(histo, mln::c6(), min_volume);
+ label = mln::labeling::regional_maxima(opened, mln::c6(), n_labels);
+ dilated = mln::morpho::elementary::dilation(label, mln::c26());
+
+ timer.stop();
+ // END OF IMAGE PROCESSING CHAIN
+
+ std::ostringstream name;
+ std::ostringstream name2;
+ std::ostringstream name3;
+
+ name << "input_rgb" << n << ".ppm";
+ name2 << "output_rgb" << n << ".ppm";
+ name3 << "label_img" << n << ".pgm";
+
+ std::cout << "Done in : " << timer.read() << " s"
<< std::endl;
+ std::cout << "Labels : " << n_labels << std::endl;
+ std::cout << "Name : " << name.str() << std::endl;
+
+ mln::io::ppm::save(input_rgbn, name.str());
+
+ mln::util::timer timer2;
+
+ timer2.start();
+ print_count2(input_rgbn, histo, dilated, n_labels);
+ timer2.stop();
+ std::cout << "timer2 : " << timer2.read() << std::endl;
+ output_rgbn = mln::data::transform(input_rgbn,
+ t_merge_lbl8_with_rgbn<n>(label));
+ // output_rgbn = merge<n>(input_rgbn, dilated);
+ mln::io::ppm::save(output_rgbn, name2.str());
+
+ label_img = mln::data::transform(input_rgbn,
+ t_labeling_rgbn<n>(label));
+ // label_img = label_image<n>(input_rgbn, dilated);
+ mln::io::pgm::save(label_img, name3.str());
+
+
+ // localiser les couleurs sur l'image (fond en black, le reste)
+
+ // La dilatation englobe beaucoup plus de couleur, mais celles-ci ne
+ // sont pas forcément présentes dans l'image. Du coup, les classes ne
+ // bougent pas démeusurément.
+
+// mln::io::ppm::save(input_rgb5, "input_rgb5.ppm");
+// mln::io::plot::save_image_sh(input_rgb8, "input_rgb8.sh");
+// mln::io::plot::save_image_sh(input_rgb5, "input_rgb5.sh");
+// projected = mln::display::display_histo3d_unsigned(histo);
+// mln::io::pgm::save(projected, "histo.pgm");
+// mln::io::plot::save_image_sh(histo, "histo.sh");
+// mln::io::plot::save_image_sh(opened, "opened.sh");
+// filtered = mln::display::display_histo3d_unsigned(opened);
+// mln::io::pgm::save(filtered, "filtered.pgm");
+// mln::io::plot::save_image_sh(label, "label.sh");
+ // mln::io::plot::save_image_sh(dilated, "dilated.sh");
+
+ /*
// OUTPUT PHASE
std::cout << "Output phase ..." << std::endl;
output_rgb5 = merge(input_rgb5, dilated);
@@ -221,113 +564,21 @@ void do_demo(const std::string& image)
label_img = label_image(input_rgb5, dilated);
mln::io::pgm::save(label_img, "label_img.pgm");
-
// BUILDING MEAN VALUES
std::cout << "Building mean values phase ..." << std::endl;
mean_rgb5 = mln::labeling::mean_values(input_rgb5, label_img, n_labels);
mln::io::ppm::save(mean_rgb5, "mean.ppm");
+ */
}
-void demo(const std::string& image =
SCRIBO_PPM_IMG_PATH"/mp00082c_50p.ppm",
- //const std::string& image = OLENA_IMG_PATH"/house.ppm",
- const unsigned k_center = 2,
- //const unsigned k_center = 3,
- const unsigned n_times = 10,
- const unsigned watch_dog = 10)
-{
- std::cout << "----------------------------------------" <<
std::endl;
- std::cout << "Launching the demo with these parameters" <<
std::endl;
- std::cout << "image : " << image <<
std::endl;
- std::cout << "k_center : " << k_center <<
std::endl;
- std::cout << "n_times : " << n_times <<
std::endl;
- std::cout << "watch_dog : " << watch_dog <<
std::endl;
- std::cout << "----------------------------------------" <<
std::endl;
-
- do_demo(image);
-}
-
-void usage(const int argc, const char *args[])
-{
- std::cout << "----------------------------------------" <<
std::endl;
- std::cout << "argc : " << argc <<
std::endl;
-
- for (int i = 0; i < argc; ++i)
- std::cout << "args[" << i << "] : " <<
args[i] << std::endl;
-
- std::cout << "----------------------------------------" <<
std::endl;
- std::cout << "usage: kmean2d [image [k_center [n_times [watch_dog]]]]"
- << std::endl;
- std::cout << "pbm image (points to work with)" <<
std::endl;
- std::cout << "unsigned k_center (number of centers)" <<
std::endl;
- std::cout << "unsigned n_times (number of launching)" <<
std::endl;
- std::cout << "unsigned watch_dog (convergence loop)" <<
std::endl;
- std::cout << "----------------------------------------" <<
std::endl;
-}
-
-bool char_to_unsigned(const bool status, const char *arg, unsigned& val)
-{
- bool result = false;
-
- if (status)
- {
- std::istringstream arg_stream(arg);
-
- arg_stream >> val;
-
- result = !arg_stream.fail();
- }
-
- return result;
-}
-
-bool char_to_string(const bool status, const char *arg, std::string& val)
-{
- bool result = false;
-
- if (status)
- {
- std::istringstream arg_stream(arg);
-
- arg_stream >> val;
-
- return !arg_stream.fail();
- }
-
- return result;
-}
-
-int main(const int argc, const char *args[])
+int main()
{
- std::string image("top");
- unsigned k_center;
- unsigned watch_dog;
- unsigned n_times;
- bool status = true;
-
- switch (argc)
- {
- case 5: status = char_to_unsigned(status, args[4], watch_dog);
- case 4: status = char_to_unsigned(status, args[3], n_times);
- case 3: status = char_to_unsigned(status, args[2], k_center);
- case 2: status = char_to_string(status, args[1], image); break;
- case 1: status = true; break;
- default: status = false;
- }
-
- if (status)
- {
- switch (argc)
- {
- case 1: demo(); break;
- case 2: demo(image); break;
- case 3: demo(image, k_center); break;
- case 4: demo(image, k_center, n_times); break;
- case 5: demo(image, k_center, n_times, watch_dog); break;
- }
- }
- else
- usage(argc, args);
-
- return 0;
+ demo<2>(); // 2.26 s
+ demo<3>(); // 2.29 s
+ demo<4>(); // 2.29 s
+ demo<5>(); // 2.37 s
+ demo<6>(); // 3.19 s
+ demo<7>(); // 11.43 s
+ demo<8>(); // 96.19 s
}
--
1.5.6.5