* green/doc/formulae/formulae.tex : Correct file.
---
trunk/milena/sandbox/ChangeLog | 6 +
.../milena/sandbox/green/doc/formulae/formulae.tex | 116 ++++++++++----------
2 files changed, 64 insertions(+), 58 deletions(-)
diff --git a/trunk/milena/sandbox/ChangeLog b/trunk/milena/sandbox/ChangeLog
index 6572258..923875c 100644
--- a/trunk/milena/sandbox/ChangeLog
+++ b/trunk/milena/sandbox/ChangeLog
@@ -1,3 +1,9 @@
+2009-09-11 Yann Jacquelet <jacquelet(a)lrde.epita.fr>
+
+ Correct english writing in the documentation file.
+
+ * green/doc/formulae/formulae.tex : Correct file.
+
2009-09-10 Yann Jacquelet <jacquelet(a)lrde.epita.fr>
Try to fix order problem between points and vectors.
diff --git a/trunk/milena/sandbox/green/doc/formulae/formulae.tex
b/trunk/milena/sandbox/green/doc/formulae/formulae.tex
index 52af7a7..655cb1a 100644
--- a/trunk/milena/sandbox/green/doc/formulae/formulae.tex
+++ b/trunk/milena/sandbox/green/doc/formulae/formulae.tex
@@ -41,7 +41,7 @@
\newcommand{\fm}[1]{\mathbb{#1}}
%% \df
-%% input : the set which the dim we are intering in
+%% input : the set whose dimension we are interested in
%%
\newcommand{\df}[1]{|{\mathbb{#1}}|}
@@ -65,20 +65,20 @@ in the development.
\section{Notations}
\begin{itemize}
- \item Use lowercase and normal font for the scalar variables.
- \item Use lowercase and bold font for the vector variables.
- \item Use uppercase and normal font for the matrix variables.
- \item Use uppercase and double font for the set variables.
+ \item Use lowercase and normal font for scalar variables.
+ \item Use lowercase and bold font for vector variables.
+ \item Use uppercase and normal font for matrix variables.
+ \item Use uppercase and double font for set variables.
\end {itemize}
%=================================================================
\subsection{Sets}
-There is three particular sets that we use every time:
+There are three particular sets that we use every time:
\begin{itemize}
- \item The color space $\fm{C}$ in which the pixels take their value.
- \item The dataset $\fm{P}$ which contains every pixel we take care.
- \item The group set $\fm{G}$ that define any splitting of the dataset.
+ \item The color space $\fm{C}$ in which the pixels take their values.
+ \item The dataset $\fm{P}$ which contains every pixel we care about.
+ \item The group set $\fm{G}$ that defines any splitting of the dataset.
\end{itemize}
\begin{tabular}{|c|l|l|c|c|}
@@ -98,15 +98,15 @@ There is three particular sets that we use every time:
%=================================================================
\subsection{Color space}
-We use the euclidian distance.
+We use the Euclidian distance.
-$$
+\[
d(a,b) =
\sqrt{\sum_{i=0}^q (a_i - b_i)^2} =
\sqrt{(a_x - b_x)^2 + (a_y - b_y)^2 + (a_z - b_z)^2}
-$$
+\]
-$$
+\[
d(a,b)^2 =
\left[\begin{array}{ccc}
a_x - b_x & a_y - b_y & a_z - b_z
@@ -117,13 +117,13 @@ d(a,b)^2 =
a_y - b_y \\
a_y - b_z
\end{array}\right]
-$$
+\]
%=================================================================
\subsection{Data points in $\mathbb{R}^3$}
We present the four points of the dataset with their vector representation.
-$$
+\[
\bm{a} =
\left[\begin{array}{c}
a_x \\
@@ -143,9 +143,9 @@ $$
p_{13}
\end{array}\right]
= \bm{p}_1
-$$
+\]
-$$
+\[
\bm{b} =
\left[\begin{array}{c}
b_x \\
@@ -187,9 +187,9 @@ $$
p_{33}
\end{array}\right]
= \bm{p}_3
-$$
+\]
-$$
+\[
\mbox{\boldmath$d$} =
\left[\begin{array}{c}
d_x \\
@@ -209,11 +209,11 @@ $$
p_{43}
\end{array}\right]
= \bm{p}_4
-$$
+\]
One may group the four points in one matrix P :
-$$
+\[
P =
\left[\begin{array}{c}
\bm{a}^t \\
@@ -249,12 +249,12 @@ P =
\bm{p}_3^t \\
\bm{p}_4^t
\end{array}\right]
-$$
+\]
%=================================================================
\subsection{The group}
-We can define the group set $\fm{G}$ in thow context:
+We can define the group set $\fm{G}$ in this context:
\begin{itemize}
\item First, the group set is a partition.
\item Second, the group set if a fuzzy set.
@@ -321,7 +321,7 @@ Let's have a look to the first three moments.
%=================================================================
\subsection{The mean}
-$$
+\[
\mbox{\boldmath$m$} =
\left[\begin{array}{c}
m_x \\
@@ -353,8 +353,8 @@ $$
\mbox{\boldmath$d$})
=
\frac{1}{4}\sum_{i=1}^{4}\mbox{\boldmath$p$}_i
-$$
-$$
+\]
+\[
\mbox{\boldmath$m$} =
\frac{1}{4}
\left[\begin{array}{cccc}
@@ -382,10 +382,10 @@ $$
\end{array}\right]
=
\frac{1}{4} P^t \mbox{\boldmath$ 1$}
-$$
+\]
The mean matrix:
-$$
+\[
M =
\left[\begin{array}{c}
\mbox{\boldmath$m$}^t \\
@@ -407,10 +407,10 @@ M =
m_1 & m_2 & m_3 \\
m_1 & m_2 & m_3
\end{array}\right]
-$$
+\]
We define the difference between a point $\mbox{\boldmath$p$}_i$ and the mean:
-$$
+\[
(\mbox{\boldmath$p$}_i - \mbox{\boldmath$m$}) =
\left[\begin{array}{c}
p_{ix} - m_x \\
@@ -423,11 +423,11 @@ $$
p_{i2} - m_2 \\
p_{i3} - m_3
\end{array}\right]
-$$
+\]
And for all the dataset:
-$$
+\[
(P - M) =
\left[\begin{array}{ccc}
a_x & a_y & a_z \\
@@ -449,12 +449,12 @@ $$
c_x - m_x & c_y - m_y & c_z - m_z \\
d_x - m_x & d_y - m_y & d_z - m_z
\end{array}\right]
-$$
+\]
%=================================================================
\subsection{The variance}
-$$
+\[
\begin{array}{lcl}
V & = &
\left[\begin{array}{ccc}
@@ -501,12 +501,12 @@ V & = &
\frac{1}{4}
(P - M)^t (P - M)
\end{array}
-$$
+\]
%#################################################################
\section{Splitting into groups}
-When we study some mixed population, the total variance can be splitted in the
-the variance between the groups and in the variance whithin each group.
+When we study some mixed population, the total variance can be split in
+the variance between the groups and in the variance within each group.
We define two groups in the population. Each group owns its moments of the
second order.
@@ -514,51 +514,51 @@ second order.
%=================================================================
\subsection{Decomposing the count}
-$$
+\[
\begin{array}{lcl}
n_t & = & n_1 + n_2 \\
& = & \sum_{i=1}^{2} n_i
\end{array}
-$$
+\]
%=================================================================
\subsection{Decomposing the mean}
-$$
+\[
\begin{array}{lcl}
\mbox{\boldmath$m_t$} & = &
\frac{1}{n_t}(n_1 \mbox{\boldmath$m_1$} + n_2 \mbox{\boldmath$m_2$}) \\
& = &
\frac{1}{n_t}\sum_{i=1}^{2} n_i \mbox{\boldmath$m_i$}
\end{array}
-$$
+\]
%=================================================================
\subsection{Decomposing the variance}
-When we study some mixed population, the total variance can be splitted in the
-the variance between the groups and in the variance whithin each group.
+When we study some mixed population, the total variance can be split in
+the variance between the groups and in the variance within each group.
-$$
+\[
V_t = V_i + V_b
-$$
+\]
-$$
+\[
\begin{array}{lcl}
V_i & = & \frac{1}{n_t}(n_1 V_1 + n_2 V_2) \\
& = & \frac{1}{n_t}\sum_{i=1}^2 n_i V_i
\end{array}
-$$
+\]
-$$
+\[
\begin{array}{lcl}
V_b & = & \frac{1}{n_t}(n_1 (\mbox{\boldmath$m_1$} - \mbox{\boldmath$m_t$})^2 +
n_2 (\mbox{\boldmath$m_2$} - \mbox{\boldmath$m_t$})^2 \\
& = & \frac{1}{n_t} \sum_{i=1}^2 n_i
(\mbox{\boldmath$m_i$} - \mbox{\boldmath$m_t$})^2
\end{array}
-$$
+\]
%#################################################################
\section{Basis}
@@ -566,7 +566,7 @@ $$
%%=================================================================
\subsection{Determinant of a square matrix 3x3}
-$$
+\[
\det{V} =
\left|\begin{array}{ccc}
v_{11} & v_{12} & v_{13} \\
@@ -577,12 +577,12 @@ $$
v_{11}(v_{22}v_{33} - v_{32}v_{23})
- v_{12}(v_{21}v_{33} - v_{31}v_{23})
+ v_{13}(v_{21}v_{32} - v_{31}v_{22})
-$$
+\]
%%=================================================================
\subsection{Transpose}
-$
+\[
V^t =
\left[\begin{array}{ccc}
v_{11} & v_{12} & v_{13} \\
@@ -595,7 +595,7 @@ V^t =
v_{12} & v_{22} & v_{32} \\
v_{13} & v_{23} & v_{33}
\end{array}\right]
-$
+\]
%%=================================================================
\subsection{Inverse of a square matrix 3x3}
@@ -759,8 +759,8 @@ $$
%%=================================================================
\subsection{Eigenvalues and eigenvectors}
-We assume that we work on variance/covariance matrix which is real and symetric.
-In this case, all the three eigen values are real.
+We assume that we work on a variance/covariance matrix which is real and
+symmetric. In this case, all the three eigenvalues are real.
$$
V \bm{x} = \lambda \bm{x}
@@ -1089,14 +1089,14 @@ polynomia. The difficulties disappear when we find one of the
three roots.
A planar regression allows us to reach the equation of the plane. From the
equation, we can determine its normal vector $\bm{w}$. It satisfies the
following equation $A\bm{w} = \lambda_3\bm{w}$. Thus we know $\lambda_3$.
-By the way, as far as $trace(A) = \lambda_1 + \lambda_2 + \lambda_3$ and
-$det(A) = \lambda_1 \lambda_2 \lambda_3$, then we can access to the value of
+By the way, $trace(A) = \lambda_1 + \lambda_2 + \lambda_3$ and
+$det(A) = \lambda_1 \lambda_2 \lambda_3$, then we can determine the value of
the two others eigenvalues (just solve $\lambda^2 - (trace(A) - \lambda_3)
\lambda + \frac{det(A)}{\lambda_3} = 0$). The knowledge of $\lambda_1$ and
$\lambda_2$ let us find $\bm{u}$ and $\bm{v}$ by the equations $A\bm{u} =
\lambda_1\bm{u}$ and $A\bm{v} = \lambda_2\bm{v}$.
-Let's center the points by susbtracting their center of mass. Now, we have
+Let's center the points by subtracting their center of mass. Now, we have
three equivalent ways to estimate the coefficients of the plane:
\begin{itemize}
\item if not $c = 0$, then $\frac{a}{c}x + \frac{b}{c}y + z = 0$,
--
1.5.6.5