URL:
https://svn.lrde.epita.fr/svn/oln/trunk/milena
ChangeLog:
2007-11-08 Matthieu Garrigues <garrigues(a)lrde.epita.fr>
Add an faster FLLT algorithm implementation.
* sandbox/garrigues/fllt_optimized.hh: New, same
implementation of FLLT algorithm, expect we avoid calling
labeling::level to determine the holes of a each shape.
---
fllt_optimized.hh | 895 ++++++++++++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 895 insertions(+)
Index: trunk/milena/sandbox/garrigues/fllt_optimized.hh
===================================================================
--- trunk/milena/sandbox/garrigues/fllt_optimized.hh (revision 0)
+++ trunk/milena/sandbox/garrigues/fllt_optimized.hh (revision 1455)
@@ -0,0 +1,895 @@
+// Copyright (C) 2007 EPITA Research and Development Laboratory
+//
+// This file is part of the Olena Library. This library is free
+// software; you can redistribute it and/or modify it under the terms
+// of the GNU General Public License version 2 as published by the
+// Free Software Foundation.
+//
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this library; see the file COPYING. If not, write to
+// the Free Software Foundation, 51 Franklin Street, Fifth Floor,
+// Boston, MA 02111-1307, USA.
+//
+// As a special exception, you may use this file as part of a free
+// software library without restriction. Specifically, if other files
+// instantiate templates or use macros or inline functions from this
+// file, or you compile this file and link it with other files to
+// produce an executable, this file does not by itself cause the
+// resulting executable to be covered by the GNU General Public
+// License. This exception does not however invalidate any other
+// reasons why the executable file might be covered by the GNU General
+// Public License.
+
+
+#ifndef MLN_FIXME_FLLT_HH
+# define MLN_FIXME_FLLT_HH
+
+/*! \file fllt.hh
+ *
+ * \brief Fast level line transform of an image.
+ *
+ */
+
+# include <mln/core/image2d.hh>
+# include <mln/core/set_p.hh>
+# include <mln/core/inplace.hh>
+# include <mln/core/neighb2d.hh>
+# include <mln/core/pset_if_piter.hh>
+# include <mln/core/pset_if.hh>
+# include <mln/core/sub_image.hh>
+# include <mln/core/image_if.hh>
+# include <mln/core/clone.hh>
+# include <mln/core/a_point_of.hh>
+
+# include <mln/debug/println.hh>
+# include <mln/debug/println_with_border.hh>
+
+# include <mln/convert/to_image.hh>
+
+# include <mln/border/fill.hh>
+
+# include <mln/level/compute.hh>
+# include <mln/level/fill.hh>
+# include <mln/accu/min.hh>
+# include <mln/accu/max.hh>
+
+# include <mln/set/uni.hh>
+# include <mln/set/diff.hh>
+# include <mln/set/inter.hh>
+# include <mln/set/is_subset_of.hh>
+
+# include <mln/util/tree.hh>
+# include <mln/util/branch_iter_ind.hh>
+
+# include <mln/labeling/regional_minima.hh>
+# include <mln/labeling/regional_maxima.hh>
+# include <mln/labeling/level.hh>
+
+# include <mln/fun/ops.hh>
+# include <mln/pw/value.hh>
+# include <mln/pw/cst.hh>
+
+# include <mln/util/tree_to_image.hh>
+# include <mln/value/int_u8.hh>
+# include <mln/level/stretch.hh>
+# include <mln/level/compare.hh>
+# include <mln/io/pgm/save.hh>
+
+namespace mln
+{
+ namespace fllt
+ {
+
+ template <typename P, typename V>
+ struct fllt_node_elt
+ {
+ V value;
+ set_p<P> points;
+ set_p<P> holes;
+ /// Tell if his parent if brighter or not. Nb : if the parent
+ /// if brighter, the node come from the lower level set
+ bool brighter;
+ };
+
+# define fllt_tree(P, V) util::tree< fllt_node_elt<P, V> >
+# define fllt_node(P, V) util::node< fllt_node_elt<P, V> >
+# define fllt_branch(P, V) util::branch< fllt_node_elt<P, V> >
+# define fllt_branch_iter(P, V) util::branch_iter< fllt_node_elt<P, V> >
+
+ // # define fllt_node(P, V) typename fllt_tree(P, V)::node_t
+
+
+
+ // LOWER LEVEL SET : region = c4, border = c8
+ // UPPER LEVEL SET : region = c8, border = c4
+
+ // 1)
+ // x0 <- a not tagged local mininum of ima.
+ // g <- u(x0)
+
+ // 2)
+ // A <- {x0}
+ // R <- {}
+ // N <- {}
+
+ // 3)
+ // N <- N union {x neighbor of a pixel in a}
+ // gn <- min u(x) x belongs to N.
+ // R <- R union A
+ // tag the pixels of A.
+
+ // 4)
+ // IF g < gn
+ // IF number of conected components of the border > 1
+ // follow each border to find which is the exterior border
+ // and which are the holes. Keep one pixel of each holes.
+ //
+ // Remove from N border of holes.
+ // Recompute gn <- min u(x) x belongs to A
+ //
+ // g <- gn
+ // A <- {x belongs to N / u(x) == g}
+ // N <- N\{x belongs to N / u(x) == g}
+ // GO TO 3)
+ // IF g == gn
+ // A <- {x belongs to N / u(x) == g}
+ // N <- N\{x belongs to N / u(x) == g}
+ // GO TO 3)
+ // IF g > gn
+ // set the gray-level of the pixels of R to g.
+ // GO TO 1)
+
+ template <typename P, typename V>
+ struct fllt_env
+ {
+ const image2d<V>& input;
+ image2d<V> u;
+ image2d<bool> tagged;
+ fllt_node(P, V)* current_region;
+ image2d<fllt_node(P, V)*>& regions;
+ set_p<P> A;
+ set_p<P> R;
+ set_p<P> N;
+ V g,gn;
+ point2d x0;
+
+ fllt_env(const image2d<V>& input,
+ image2d<fllt_node(P, V)*>& regions_)
+ : input(input),
+ regions(regions_),
+ tagged(input.domain())
+ {
+
+ // INIT
+ R.clear();
+ N.clear();
+ A.clear();
+ g= 0;
+ gn = 0;
+ current_region = 0;
+
+ level::fill(regions, 0);
+ level::fill(tagged, false);
+
+ u = clone(input);
+ border::fill(u, 0);
+ }
+
+ };
+
+ template <typename P, typename V>
+ void step1 (fllt_env<P, V>& env,
+ point2d p)
+ {
+ //std::cout << "entering step 1" << std::endl;
+ // x0 <- a not tagged local mininum of ima.
+ //std::cout << std::endl << "x0 = " << p <<
std::endl;
+ env.x0 = p;
+ // g <- u(x0)
+ env.g = env.input(env.x0);
+ //std::cout << "g = " << g << std::endl;
+ //std::cout << "exiting step 1" << std::endl;
+ }
+
+ template <typename P, typename V>
+ void step2 (fllt_env<P, V>& env)
+ {
+ //std::cout << "entering step 2" << std::endl;
+ // A <- {x0}
+ env.A.clear();
+ env.A.insert(env.x0);
+ // R <- {}
+ env.R.clear();
+ // N <- {}
+ env.N.clear();
+ //std::cout << "exiting step 2" << std::endl;
+ }
+
+
+ template <typename V, typename P, typename F>
+ void step3 (fllt_env<P, V>& env)
+ {
+ static bool finished = false;
+ //std::cout << "entering step 3" << std::endl;
+
+ // Stop the algorithm.
+ if (finished)
+ { finished = false; env.gn -= 2 * F::inc; return; }
+
+ // N <- N union {x neighbor of a pixel in a\R}
+ mln_piter(set_p<P>) qa(env.A);
+ for_all(qa)
+ {
+ mln_niter(neighb2d) n(F::reg_nbh(), qa);
+ for_all (n)
+ if (!env.R.has (n))
+ env.N.insert (n);
+ }
+
+ // debug::println(u);
+
+ // //std::cout << "A :" << std::endl;
+ // if (A.npoints())
+ // //debug::println(u | A);
+ // //std::cout << "N :" << std::endl;
+ // if (N.npoints())
+ // //debug::println(u | N);
+ // //std::cout << "R :" << std::endl;
+ // if (R.npoints())
+ // //debug::println(u | R);
+
+ // gn <- min u(x) x belongs to N.
+ if ((env.u | set::inter(env.N, env.u.domain())).npoints() > 0)
+ env.gn = level::compute< typename F::accu_for_gn >(env.u | set::inter(env.N,
env.u.domain()));
+ else
+ {
+ finished = true;
+ env.gn += F::inc;
+ }
+ //std::cout << std::endl << "gN = " << gn <<
std::endl;
+ // R <- R union A
+ // tag the pixels of A.
+
+ for_all(qa)
+ {
+ env.R.insert(qa);
+ env.tagged(qa) = true;
+ //Update the number of connected components.
+ }
+ //std::cout << "exiting step 3" << std::endl;
+ }
+
+
+ /// IF g < gn.
+ template <typename V, typename P, typename F>
+ void step4_1 (fllt_env<P, V>& env)
+ {
+ //std::cout << "entering step 4_1" << std::endl;
+
+ // If the region is bounded
+ // Create a new conected component.
+ // FIXME : we can make it faster.
+
+ if ((env.R.bbox() < env.u.domain()) || (env.R.npoints() ==
env.u.domain().npoints()))
+ {
+ mln_piter(set_p<P>) p(env.R);
+ env.current_region = new fllt_node(P, V)();
+ env.current_region->elt().brighter = F::parent_is_brighter;
+ env.current_region->elt().value = env.g;
+ for_all(p)
+ {
+ env.current_region->elt().points.insert(p);
+
+ if (env.regions(p) == 0)
+ {
+ //current_region->elt().points.insert(p);
+ env.regions(p) = env.current_region;
+ }
+ else
+ {
+ if (env.regions(p)->parent() == 0)
+ env.regions(p)->set_parent(env.current_region);
+ }
+ }
+
+
+ // Count the number of conected components of the border of R.
+ static image2d<int> tmp(env.u.domain().to_larger(1));
+ static image2d<bool> border_ima(tmp.domain());
+ level::fill(border_ima, false);
+
+ // level::fill(inplace(border_ima | N), true);
+ // std::cout << "tmp border = " << tmp.border () <<
std::endl;
+ // std::cout << "ima border = " << border_ima.border ()
<< std::endl;
+ mln_piter(set_p<P>) z(env.N);
+ for_all(z)
+ {
+ mln_assertion(border_ima.owns_(z));
+ border_ima(z) = true;
+ }
+ std::cout << "labeling::level" << std::endl;
+ unsigned n;
+ labeling::level(border_ima, true, F::bdr_nbh(), tmp, n);
+
+ // debug::println(border_ima);
+ //std::cout << "nb composantes :" << n << std::endl;
+ // debug::println(tmp);
+ if (n > 1)
+ {
+
+ // IF number of conected components of the border > 1
+ for (int i = 2; i <= n; i++)
+ {
+ // follow each border to find which is the exterior border
+ // and which are the holes. Keep one pixel of each holes.
+
+ // WARNING : We trust labeling::level to label the exterior border with 1.
+ env.current_region->elt().holes.insert(a_point_of(tmp | pw::value(tmp) ==
pw::cst(i)));
+
+ // FIXME : [optimisation] Remove from N border of holes???.
+ // Recompute gn <- min u(x) x belongs to A
+ }
+ }
+
+ }
+ env.g = env.gn;
+ // A <- {x belongs to N / u(x) == g}
+ env.A.clear();
+ env.A = set::uni(env.A, set::inter(env.N, env.u.domain()) | pw::value(env.u) ==
pw::cst(env.g));
+ // N <- N\{x belongs to N / u(x) == g}
+ env.N = set::diff(env.N, set::inter(env.N, env.u.domain()) | pw::value(env.u) ==
pw::cst(env.g));
+
+ // std::cout << "A :" << std::endl;
+ // if (A.npoints())
+ // debug::println(u | A);
+ // std::cout << "N :" << std::endl;
+ // if (N.npoints())
+ // debug::println(u | N);
+
+ //std::cout << "exiting step 4_1" << std::endl;
+ }
+
+
+ /// IF g == gn.
+ template <typename V, typename P>
+ void step4_2 (fllt_env<P, V>& env)
+ {
+ //std::cout << "entering step 4_2" << std::endl;
+
+ // A <- {x belongs to N / u(x) == g}
+ env.A = set::uni(env.A, set::inter(env.N, env.u.domain()) | pw::value(env.u) ==
pw::cst(env.g));
+ // N <- N\{x belongs to N / u(x) == g}
+ env.N = set::diff(env.N, set::inter(env.N, env.u.domain()) | pw::value(env.u) ==
pw::cst(env.g));
+
+ // std::cout << "A :" << std::endl;
+ // if (A.npoints())
+ // debug::println(u | A);
+ // std::cout << "N :" << std::endl;
+ // if (N.npoints())
+ // debug::println(u | N);
+
+ //std::cout << "exiting step 4_2" << std::endl;
+ }
+
+ /// IF g > gn.
+ template <typename V, typename P>
+ void step4_3 (fllt_env<P, V>& env)
+ {
+ //std::cout << "entering step 4_3" << std::endl;
+
+ // set the gray-level of the pixels of R to g.
+ mln_piter(set_p<P>) p(env.R);
+ for_all(p)
+ {
+ mln_assertion (env.tagged(p));
+ env.u (p) = env.g;
+ }
+
+ //std::cout << "exiting step 4_3" << std::endl;
+
+ }
+
+
+ template <typename V, typename F>
+ fllt_tree(point2d, V)&
+ compute_level_set(const image2d<V>& input,
+ image2d< fllt_node(point2d, V)* >& regions)
+ {
+ typedef point2d P;
+ typedef image2d<V> I;
+
+ // FIXME: not nice.
+ typedef mln::image_if<
+ mln::image2d<V>,
+ mln::fun::greater_p2b_expr_<mln::pw::value_<mln::image2d<V> >,
+ mln::pw::cst_<int> >
+ > I_IF;
+
+ // Check
+ mln_assertion(input.domain() == regions.domain());
+
+ // FIXME : rename it.
+ fllt_env<P,V> env(input, regions);
+
+ // Declarations.
+// set_p<P> R, N, A;
+// V g, gn;
+// point2d x0;
+ image2d<V> min_locals(input.domain());
+
+
+ // Get the locals extremums
+ unsigned nlabels;
+ F::regional_extremum(input, F::reg_nbh(), min_locals, nlabels);
+
+ // debug::println(min_locals);
+ // debug::println(min_locals | (pw::value(min_locals) > pw::cst(0)));
+
+ /// Algorithm.
+ {
+ // For all locals extremums
+ //void* x = min_locals | (pw::value(min_locals) > pw::cst(0));
+ I_IF min_locals_list(min_locals | (pw::value(min_locals) > pw::cst(0)));
+ mln_piter(I_IF) p(min_locals_list.domain());
+ for_all(p)
+ {
+ if (env.tagged(p))
+ continue;
+
+ step1(env, p);
+ step2(env);
+ while (1)
+ {
+ //std::cout << "g = " << g << std::endl;
+ step3<V, P, F>(env);
+ /// step4.
+ if (F::compare(env.g, env.gn))
+ {
+ step4_1<V, P, F>(env);
+ // GO TO 3)
+ continue;
+ }
+
+
+ if (env.g == env.gn)
+ {
+ step4_2(env);
+ // GO TO 3)
+ continue;
+ }
+
+
+ if (!F::compare(env.g, env.gn))
+ {
+ step4_3(env);
+ // GO TO 1)
+ break;
+ }
+ }
+ //std::cout << "current_region = " << current_region <<
std::endl;
+ }
+ } // end of Algorithm
+
+ image2d<value::int_u8> output (input.domain ());
+ fllt_tree(P, V)& tree = *new fllt_tree(P, V)(env.current_region);
+ util::tree_to_image (tree, output);
+
+ // util::display_tree(input, tree);
+
+ // debug::println(output);
+ // std::cout << std::endl;
+ // debug::println(input);
+
+ // if (output != input)
+ // {
+ // std::cerr << "BUG!!!" << std::endl;
+ // abort();
+ // }
+
+ // io::pgm::save(output, "out.pgm");
+ // std::cout << "out.pgm generate"
+ // << std::endl;
+
+
+ // debug::println(regions);
+ //debug::println(input | regions(make:defined reference to
`mln::fllt::lower<mln::value::int_u<8u>
>::inc':point2d(-4,-1))->elt().points);
+
+ return (tree);
+
+ } // end of compute_level_set
+
+ //Fwd declarations.
+ template <typename V> struct lower;
+ template <typename V> struct upper;
+
+ // LOWER LEVEL SET : region = c4, border = c8
+ template <typename V>
+ struct lower
+ {
+ typedef upper<V> opposite;
+ static bool
+ compare(const V& u, const V& v)
+ {
+ return u < v;
+ }
+
+ template <typename I, typename N, typename O>
+ static bool
+ regional_extremum(const Image<I>& input, const Neighborhood<N>&
nbh,
+ Image<O>& output, unsigned& nlabels)
+ {
+ return labeling::regional_minima(input, nbh,
+ output, nlabels);
+ }
+
+ static const int inc = 1;
+ static const bool parent_is_brighter = true;
+ typedef accu::min accu_for_gn;
+
+ static const neighb2d& bdr_nbh() { return c8(); }
+ static const neighb2d& reg_nbh() { return c4(); }
+
+ };
+
+
+
+ // UPPER LEVEL SET : region = c8, border = c4
+ template <typename V>
+ struct upper
+ {
+ typedef lower<V> opposite;
+
+ static bool
+ compare(const V& u, const V& v)
+ {
+ return u > v;
+ }
+
+ template <typename I, typename N, typename O>
+ static bool
+ regional_extremum(const Image<I>& input, const Neighborhood<N>&
nbh,
+ Image<O>& output, unsigned& nlabels)
+ {
+ return labeling::regional_maxima(input, nbh,
+ output, nlabels);
+ }
+
+ static const int inc = -1;
+ static const bool parent_is_brighter = false;
+ typedef accu::max accu_for_gn;
+
+ static const neighb2d& bdr_nbh() { return c4(); }
+ static const neighb2d& reg_nbh() { return c8(); }
+ };
+
+ // Fwd declarations.
+ template <typename P, typename V, typename F>
+ void
+ fill_a_shape(fllt_node(P, V)& node,
+ fllt_tree(P, V)& tree,
+ const image2d<fllt_node(P, V)*>& node_reg,
+ const image2d<fllt_node(P, V)*>& hole_reg);
+
+ template <typename P, typename V, typename F>
+ void
+ move_shape(fllt_node(P, V)& node,
+ fllt_node(P, V)& hole,
+ fllt_tree(P, V)& tree,
+ const image2d<fllt_node(P, V)*>& hole_reg,
+ const image2d<fllt_node(P, V)*>& other_reg)
+ {
+ // FIXME : debug to remove.
+ // std::cout << " [move_shape] "<< &hole
<< " as son of "<< &node << std::endl;
+ //node.elt().points = set::uni(hole.elt().points, node.elt().points);
+ node.add_child(&hole);
+ fill_a_shape<P,V,typename F::opposite>(hole, tree, hole_reg, other_reg);
+ }
+
+ template <typename P, typename V, typename F>
+ fllt_node(P, V)*
+ find_the_hole(fllt_node(P, V)& node,
+ const P p,
+ const image2d<fllt_node(P, V)*>& other_reg)
+ {
+ fllt_node(P, V)* s = other_reg(p);
+ mln_assertion(s);
+ while (s->parent() &&
F::opposite::compare(s->parent()->elt().value, node.elt().value))
+ //FIXME : Was while (s->parent() && (s->parent()->elt().value <
node.elt().value))
+ {
+ mln_assertion(s);
+ s = s->parent();
+ mln_assertion(s);
+ }
+// std::cout << " [Find the hole] of " << p
+// << " from " << &node
+// << " return " << s
+// << std::endl;
+ return s;
+ }
+
+ template <typename P, typename V, typename F>
+ void
+ fill_a_shape(fllt_node(P, V)& node,
+ fllt_tree(P, V)& tree,
+ const image2d<fllt_node(P, V)*>& node_reg,
+ const image2d<fllt_node(P, V)*>& hole_reg)
+ {
+// std::cout << "[Start fill_a_shape] " << &node <<
" "
+// << node.elt().holes.npoints()
+// << " holes." << std::endl;
+
+ if (node.elt().holes.npoints() == 0)
+ {
+ // std::cout << "[End fill_a_shape]" << std::endl;
+ return;
+ }
+ mln_piter(set_p<P>) p(node.elt().holes);
+ for_all(p)
+ {
+ bool h = true;
+
+ fllt_node(P, V)* hole;
+ if (node.elt().brighter == F::parent_is_brighter)
+ hole = find_the_hole<P,V,F>(node, point2d(p), hole_reg);
+ else
+ hole = find_the_hole<P,V,typename F::opposite>(node, point2d(p), node_reg);
+
+ mln_assertion(hole);
+
+ typename fllt_node(P, V)::children_t::iterator it;
+ for (it = node.children().begin();
+ it != node.children().end();
+ it++)
+ {
+ // Browse the hole of each child.
+ mln_piter(set_p<P>) q((*it)->elt().holes);
+ for_all(q)
+ {
+ fllt_node(P, V)* child_hole = find_the_hole<P,V,F>((**it), point2d(q),
hole_reg);
+ if (set::is_subset_of(hole->elt().points,
+ child_hole->elt().points))
+
+// if (hole->elt().points < child_hole->elt().points)
+ {
+ h = false;
+ break;
+ }
+
+ }
+ if (!h)
+ break;
+ }
+ if (h)
+ move_shape<P,V,F>(node, *hole, tree, hole_reg, node_reg);
+ }
+
+ node.elt().holes.clear();
+ // std::cout << "[end fill_a_shape]" << std::endl;
+ }
+
+ template <typename P, typename V>
+ fllt_tree(P, V)
+ merge_trees(fllt_tree(P, V)& lower_tree,
+ fllt_tree(P, V)& upper_tree,
+ const image2d<fllt_node(P, V)*>& low_reg,
+ const image2d<fllt_node(P, V)*>& upp_reg,
+ const image2d<V>& ima)
+ {
+
+ // In order to merge the trees, we only have to find for each shape S
+ // with a hole H in it whether one of its children has a hole HŽ
+ // containing H. If it is the case, we do nothing. Otherwise, we
+ // put the shape of the hole H (and all its descendants) as child of
+ // the shape .
+ {
+ std::cout << "[Merge first tree]------------" << std::endl;
+
+ fllt_branch_iter(P, V) p(lower_tree.main_branch());
+ for_all(p)
+ {
+ fllt_node(P, V)& n(p);
+ fill_a_shape< P, V, lower<V> >(n, lower_tree, low_reg, upp_reg);
+ mln_assertion(lower_tree.check_consistency());
+ mln_assertion(upper_tree.check_consistency());
+ }
+
+ }
+
+ {
+ std::cout << "[Merge second tree]------------" << std::endl;
+
+ fllt_branch_iter(P, V) p(upper_tree.main_branch());
+ for_all(p)
+ {
+ fllt_node(P, V)& n(p);
+ fill_a_shape< P, V, upper<V> >(n, upper_tree, upp_reg, low_reg);
+ mln_assertion(lower_tree.check_consistency());
+ mln_assertion(upper_tree.check_consistency());
+ }
+ }
+
+ fllt_tree(P, V)* main_tree = &lower_tree;
+ fllt_tree(P, V)* other_tree = &upper_tree;
+
+ if (lower_tree.root()->elt().points.npoints() >= ima.domain().npoints())
+ {
+ main_tree = &upper_tree;
+ other_tree = &lower_tree;
+ }
+
+ typename fllt_node(P, V)::children_t::iterator it;
+ for (it = other_tree->root()->children().begin();
+ it != other_tree->root()->children().end(); )
+ {
+ main_tree->root()->add_child(*it);
+ }
+ mln_assertion(main_tree->check_consistency());
+ return *main_tree;
+ }
+
+
+ template <typename P, typename V>
+ void
+ visualize_deepness(image2d<value::int_u8>& output,
+ fllt_tree(P, V)& tree)
+ {
+ fllt_branch_iter(P, V) p(tree.main_branch());
+ level::fill(output, 0);
+ for_all(p)
+ {
+ //std::cout << (&*p) << ":" << p.deepness() <<
std::endl;
+ mln_piter(set_p<point2d>) q((*p).elt().points);
+ for_all(q)
+ {
+ if (output(q) < p.deepness())
+ output(q) = p.deepness();
+ }
+ }
+ }
+
+
+ template <typename P, typename V>
+ void
+ visualize_bounds(image2d<value::int_u8>& output,
+ fllt_tree(P, V)& tree,
+ unsigned limit)
+ {
+ fllt_branch_iter(P, V) p(tree.main_branch());
+ level::fill(output, 255);
+ for_all(p)
+ {
+ if ((*p).elt().points.npoints() > limit)
+ {
+ mln_piter(set_p<point2d>) q((*p).elt().points);
+ for_all(q)
+ {
+ mln_niter(neighb2d) n(c4(), q);
+ bool is_border = false;
+ for_all (n)
+ if (!((*p).elt().points).has (n))
+ is_border = true;
+ if (is_border)
+ output(q) = 0;
+ }
+ }
+ }
+ }
+
+ template <typename P, typename V>
+ void
+ draw_tree(const image2d<V>& ima,
+ fllt_tree(P, V)& tree)
+ {
+ fllt_branch_iter(P, V) p(tree.main_branch());
+ for_all(p)
+ {
+ std::cout << "region mere : " << (*p).parent() <<
std::endl;
+ std::cout << " ^" << std::endl;
+ std::cout << " |" << std::endl;
+ std::cout << "region : " << &*p
+ << " value = " << (*p).elt().value << std::endl
+ << " holes : "
+ << (*p).elt().holes.npoints()
+ << (*p).elt().holes
+ << std::endl;
+
+ debug::println(ima | (*p).elt().points);
+ std::cout << std::endl;
+ }
+ }
+
+ template <typename V>
+ // Fixme : return type
+ void
+ fllt(const image2d<V>& ima)
+ {
+ typedef point2d P;
+
+ fllt_tree(P, V) upper_tree;
+ fllt_tree(P, V) lower_tree;
+ image2d<fllt_node(P, V)*> low_reg(ima.domain());
+ image2d<fllt_node(P, V)*> upp_reg(ima.domain());
+
+ std::cout << "1/ Compute the lower level set." << std::endl;
+ lower_tree = compute_level_set<V, lower<V> >(ima, low_reg);
+ //draw_tree(ima, lower_tree);
+ std::cout << "2/ Compute the upper level set." << std::endl;
+ upper_tree = compute_level_set<V, upper<V> >(ima, upp_reg);
+
+ //draw_tree(ima, upper_tree);
+
+ std::cout << "3/ Merge the two trees." << std::endl;
+
+ // FIXME : the algorithm is contrast invariant.
+ // -> the both calls have to give the same result
+ // -> check it.
+ // FIXME : call merge_tree one time will be enough.
+ std::cout << "upp_reg = " << &upp_reg <<
std::endl;
+ std::cout << "low_reg = " << &low_reg <<
std::endl;
+
+ //fllt_tree(P, V) result_tree = merge_trees(upper_tree, lower_tree, upp_reg,
low_reg, ima);
+ fllt_tree(P, V) result_tree = merge_trees(lower_tree, upper_tree, low_reg, upp_reg,
ima);
+
+
+ std::cout << "4/ Generate outputs." << std::endl;
+
+ image2d<value::int_u8> output (ima.domain ());
+ util::tree_to_image (result_tree, output);
+
+
+ // io::pgm::save(output, "out_final.pgm");
+ // std::cout << "out_final.pgm generate"
+ // << std::endl;
+
+
+ // util::display_tree(ima, lower_tree);
+ //draw_tree(ima, result_tree);
+
+ // debug::println(ima);
+ // debug::println(output);
+
+ // if (output != ima)
+ // {
+ // std::cerr << "BUG!!!" << std::endl;
+ // abort();
+ // }
+
+ image2d<value::int_u8> viz(ima.domain());
+ // image2d<value::int_u8> viz2(ima.domain());
+
+ // visualize_deepness(viz, lower_tree);
+ // level::stretch(viz, viz2);
+ // debug::println(viz);
+ // debug::println(viz2);
+ // io::pgm::save(viz2, "fllt.pgm");
+
+ visualize_bounds(viz, result_tree, 200);
+ //debug::println(viz);
+ io::pgm::save(viz, "fllt_bounds_200.pgm");
+
+ visualize_bounds(viz, result_tree, 100);
+ io::pgm::save(viz, "fllt_bounds_100.pgm");
+
+ visualize_bounds(viz, result_tree, 50);
+ io::pgm::save(viz, "fllt_bounds_50.pgm");
+
+ visualize_bounds(viz, result_tree, 20);
+ io::pgm::save(viz, "fllt_bounds_20.pgm");
+
+ visualize_bounds(viz, result_tree, 8);
+ io::pgm::save(viz, "fllt_bounds_8.pgm");
+
+ }
+
+ } // end of namespace mln::fllt
+
+} // end of namespace mln
+
+
+
+#endif // ! MLN_FIXME_FLLT_HH