URL:
https://svn.lrde.epita.fr/svn/oln/trunk/milena
ChangeLog:
2007-11-05 Matthieu Garrigues <garrigues(a)lrde.epita.fr>
Start a second version of merging trees in FLLT.
* sandbox/garrigues/fllt2.hh: New, looks like fllt.hh but differs in
merge trees. We keep the old file fllt.hh to avoid regression.
---
fllt2.hh | 809 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 809 insertions(+)
Index: trunk/milena/sandbox/garrigues/fllt2.hh
===================================================================
--- trunk/milena/sandbox/garrigues/fllt2.hh (revision 0)
+++ trunk/milena/sandbox/garrigues/fllt2.hh (revision 1430)
@@ -0,0 +1,809 @@
+// Copyright (C) 2007 EPITA Research and Development Laboratory
+//
+// This file is part of the Olena Library. This library is free
+// software; you can redistribute it and/or modify it under the terms
+// of the GNU General Public License version 2 as published by the
+// Free Software Foundation.
+//
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this library; see the file COPYING. If not, write to
+// the Free Software Foundation, 51 Franklin Street, Fifth Floor,
+// Boston, MA 02111-1307, USA.
+//
+// As a special exception, you may use this file as part of a free
+// software library without restriction. Specifically, if other files
+// instantiate templates or use macros or inline functions from this
+// file, or you compile this file and link it with other files to
+// produce an executable, this file does not by itself cause the
+// resulting executable to be covered by the GNU General Public
+// License. This exception does not however invalidate any other
+// reasons why the executable file might be covered by the GNU General
+// Public License.
+
+
+#ifndef MLN_FIXME_FLLT_HH
+# define MLN_FIXME_FLLT_HH
+
+/*! \file fllt.hh
+ *
+ * \brief Fast level line transform of an image.
+ *
+ */
+
+# include <mln/core/image2d.hh>
+# include <mln/core/set_p.hh>
+# include <mln/core/inplace.hh>
+# include <mln/core/neighb2d.hh>
+# include <mln/core/pset_if_piter.hh>
+# include <mln/core/pset_if.hh>
+# include <mln/core/sub_image.hh>
+# include <mln/core/image_if.hh>
+# include <mln/core/clone.hh>
+# include <mln/core/a_point_of.hh>
+
+# include <mln/debug/println.hh>
+# include <mln/debug/println_with_border.hh>
+
+# include <mln/convert/to_image.hh>
+
+# include <mln/border/fill.hh>
+
+# include <mln/level/compute.hh>
+# include <mln/level/fill.hh>
+# include <mln/accu/min.hh>
+# include <mln/accu/max.hh>
+
+# include <mln/set/uni.hh>
+# include <mln/set/diff.hh>
+# include <mln/set/inter.hh>
+# include <mln/set/is_subset_of.hh>
+
+# include <mln/util/tree.hh>
+# include <mln/util/branch_iter.hh>
+
+# include <mln/labeling/regional_minima.hh>
+# include <mln/labeling/regional_maxima.hh>
+# include <mln/labeling/level.hh>
+
+# include <mln/fun/ops.hh>
+# include <mln/pw/value.hh>
+# include <mln/pw/cst.hh>
+
+# include <mln/util/tree_to_image.hh>
+# include <mln/value/int_u8.hh>
+# include <mln/level/stretch.hh>
+# include <mln/level/compare.hh>
+# include <mln/io/pgm/save.hh>
+
+namespace mln
+{
+ namespace fllt
+ {
+
+ template <typename P, typename V>
+ struct fllt_node_elt
+ {
+ V value;
+ set_p<P> points;
+ set_p<P> holes;
+ /// Tell if his parent if brighter or not. Nb : if the parent
+ /// if brighter, the node come from the lower level set
+ bool brighter;
+ };
+
+# define fllt_tree(P, V) util::tree< fllt_node_elt<P, V> >
+# define fllt_node(P, V) util::node< fllt_node_elt<P, V> >
+# define fllt_branch(P, V) util::branch< fllt_node_elt<P, V> >
+# define fllt_branch_iter(P, V) util::branch_iter< fllt_node_elt<P, V> >
+
+ // # define fllt_node(P, V) typename fllt_tree(P, V)::node_t
+
+
+
+ // LOWER LEVEL SET : region = c4, border = c8
+ // UPPER LEVEL SET : region = c8, border = c4
+
+ // 1)
+ // x0 <- a not tagged local mininum of ima.
+ // g <- u(x0)
+
+ // 2)
+ // A <- {x0}
+ // R <- {}
+ // N <- {}
+
+ // 3)
+ // N <- N union {x neighbor of a pixel in a}
+ // gn <- min u(x) x belongs to N.
+ // R <- R union A
+ // tag the pixels of A.
+
+ // 4)
+ // IF g < gn
+ // IF number of conected components of the border > 1
+ // follow each border to find which is the exterior border
+ // and which are the holes. Keep one pixel of each holes.
+ //
+ // Remove from N border of holes.
+ // Recompute gn <- min u(x) x belongs to A
+ //
+ // g <- gn
+ // A <- {x belongs to N / u(x) == g}
+ // N <- N\{x belongs to N / u(x) == g}
+ // GO TO 3)
+ // IF g == gn
+ // A <- {x belongs to N / u(x) == g}
+ // N <- N\{x belongs to N / u(x) == g}
+ // GO TO 3)
+ // IF g > gn
+ // set the gray-level of the pixels of R to g.
+ // GO TO 1)
+
+ template <typename V>
+ void step1 (const image2d<V>& ima,
+ point2d p,
+ V& g,
+ point2d& x0)
+ {
+ //std::cout << "entering step 1" << std::endl;
+ // x0 <- a not tagged local mininum of ima.
+ //std::cout << std::endl << "x0 = " << p <<
std::endl;
+ x0 = p;
+ // g <- u(x0)
+ g = ima(x0);
+ //std::cout << "g = " << g << std::endl;
+ //std::cout << "exiting step 1" << std::endl;
+ }
+
+ template <typename P>
+ void step2 (set_p<P>& A,
+ set_p<P>& R,
+ set_p<P>& N,
+ point2d& x0)
+ {
+ //std::cout << "entering step 2" << std::endl;
+ // A <- {x0}
+ A.clear();
+ A.insert(x0);
+ // R <- {}
+ R.clear();
+ // N <- {}
+ N.clear();
+ //std::cout << "exiting step 2" << std::endl;
+ }
+
+
+ template <typename V, typename P, typename F>
+ void step3 (const image2d<V>& u,
+ image2d<bool>& tagged,
+ set_p<P>& A,
+ set_p<P>& R,
+ set_p<P>& N,
+ V& gn)
+ {
+ static bool finished = false;
+ //std::cout << "entering step 3" << std::endl;
+
+ // Stop the algorithm.
+ if (finished)
+ { finished = false; gn -= 2 * F::inc; return; }
+
+ // N <- N union {x neighbor of a pixel in a\R}
+ mln_piter(set_p<P>) qa(A);
+ for_all(qa)
+ {
+ mln_niter(neighb2d) n(F::reg_nbh(), qa);
+ for_all (n)
+ if (!R.has (n))
+ N.insert (n);
+ }
+
+ // debug::println(u);
+
+ // //std::cout << "A :" << std::endl;
+ // if (A.npoints())
+ // //debug::println(u | A);
+ // //std::cout << "N :" << std::endl;
+ // if (N.npoints())
+ // //debug::println(u | N);
+ // //std::cout << "R :" << std::endl;
+ // if (R.npoints())
+ // //debug::println(u | R);
+
+ // gn <- min u(x) x belongs to N.
+ if ((u | set::inter(N, u.domain())).npoints() > 0)
+ gn = level::compute< typename F::accu_for_gn >(u | set::inter(N, u.domain()));
+ else
+ {
+ finished = true;
+ gn += F::inc;
+ }
+ //std::cout << std::endl << "gN = " << gn <<
std::endl;
+ // R <- R union A
+ // tag the pixels of A.
+
+ for_all(qa)
+ {
+ R.insert(qa);
+ tagged(qa) = true;
+ }
+ //std::cout << "exiting step 3" << std::endl;
+ }
+
+
+ /// IF g < gn.
+ template <typename V, typename P, typename F>
+ void step4_1 (image2d<V>& u,
+ set_p<P>& A,
+ set_p<P>& R,
+ set_p<P>& N,
+ V& g,
+ V& gn,
+ fllt_node(P, V)*& current_region,
+ image2d<fllt_node(P, V)*>& regions
+ )
+ {
+ //std::cout << "entering step 4_1" << std::endl;
+
+ // If the region is bounded
+ // Create a new conected component.
+ // FIXME : we can make it faster.
+
+ if ((R.bbox() < u.domain()) || (R.npoints() == u.domain().npoints()))
+ {
+ mln_piter(set_p<P>) p(R);
+ current_region = new fllt_node(P, V)();
+ current_region->elt().brighter = F::parent_is_brighter;
+ current_region->elt().value = g;
+ for_all(p)
+ {
+ current_region->elt().points.insert(p);
+ if (regions(p) == 0)
+ regions(p) = current_region;
+ else
+ {
+ if (regions(p)->parent() == 0)
+ regions(p)->set_parent(current_region);
+ }
+ }
+
+
+ // Count the number of conected components of the border of R.
+ static image2d<int> tmp(u.domain().to_larger(1));
+ static image2d<bool> border_ima(tmp.domain());
+ level::fill(border_ima, false);
+
+ // level::fill(inplace(border_ima | N), true);
+ // std::cout << "tmp border = " << tmp.border () <<
std::endl;
+ // std::cout << "ima border = " << border_ima.border ()
<< std::endl;
+ mln_piter(set_p<P>) z(N);
+ for_all(z)
+ {
+ mln_assertion(border_ima.owns_(z));
+ border_ima(z) = true;
+ }
+ unsigned n;
+ labeling::level(border_ima, true, F::bdr_nbh(), tmp, n);
+
+ // debug::println(border_ima);
+ //std::cout << "nb composantes :" << n << std::endl;
+ // debug::println(tmp);
+ if (n > 1)
+ {
+
+ // IF number of conected components of the border > 1
+ for (int i = 2; i <= n; i++)
+ {
+ // follow each border to find which is the exterior border
+ // and which are the holes. Keep one pixel of each holes.
+
+ // WARNING : We trust labeling::level to label the exterior border with 1.
+ current_region->elt().holes.insert(a_point_of(tmp | pw::value(tmp) ==
pw::cst(n)));
+
+ // FIXME : [optimisation] Remove from N border of holes???.
+ // Recompute gn <- min u(x) x belongs to A
+ }
+ }
+
+ }
+ g = gn;
+ // A <- {x belongs to N / u(x) == g}
+ A.clear();
+ A = set::uni(A, set::inter(N, u.domain()) | pw::value(u) == pw::cst(g));
+ // N <- N\{x belongs to N / u(x) == g}
+ N = set::diff(N, set::inter(N, u.domain()) | pw::value(u) == pw::cst(g));
+
+ // std::cout << "A :" << std::endl;
+ // if (A.npoints())
+ // debug::println(u | A);
+ // std::cout << "N :" << std::endl;
+ // if (N.npoints())
+ // debug::println(u | N);
+
+ //std::cout << "exiting step 4_1" << std::endl;
+ }
+
+
+ /// IF g == gn.
+ template <typename V, typename P>
+ void step4_2 (const image2d<V>& u,
+ set_p<P>& A,
+ set_p<P>& N,
+ V& g,
+ fllt_node(P, V)* current_region,
+ image2d<fllt_node(P, V)*>& regions
+ )
+ {
+ //std::cout << "entering step 4_2" << std::endl;
+
+ // A <- {x belongs to N / u(x) == g}
+ A = set::uni(A, set::inter(N, u.domain()) | pw::value(u) == pw::cst(g));
+ // N <- N\{x belongs to N / u(x) == g}
+ N = set::diff(N, set::inter(N, u.domain()) | pw::value(u) == pw::cst(g));
+
+ // std::cout << "A :" << std::endl;
+ // if (A.npoints())
+ // debug::println(u | A);
+ // std::cout << "N :" << std::endl;
+ // if (N.npoints())
+ // debug::println(u | N);
+
+ //std::cout << "exiting step 4_2" << std::endl;
+ }
+
+ /// IF g > gn.
+ template <typename V, typename P>
+ void step4_3 (image2d<V>& u,
+ const image2d<bool>& tagged,
+ const set_p<P>& R,
+ const V& g)
+ {
+ //std::cout << "entering step 4_3" << std::endl;
+
+ // set the gray-level of the pixels of R to g.
+ mln_piter(set_p<P>) p(R);
+ for_all(p)
+ {
+ mln_assertion (tagged(p));
+ u (p) = g;
+ }
+
+ //std::cout << "exiting step 4_3" << std::endl;
+
+ }
+
+
+ template <typename V, typename F>
+ fllt_tree(point2d, V)&
+ compute_level_set(const image2d<V>& ima,
+ image2d< fllt_node(point2d, V)* >& regions)
+ {
+ typedef point2d P;
+ typedef image2d<V> I;
+
+ // FIXME: not nice.
+ typedef mln::image_if<
+ mln::image2d<V>,
+ mln::fun::greater_p2b_expr_<mln::pw::value_<mln::image2d<V> >,
+ mln::pw::cst_<int> >
+ > I_IF;
+
+ // Check
+ mln_assertion(ima.domain() == regions.domain());
+
+ // Declarations.
+ set_p<P> R, N, A;
+ V g, gn;
+ point2d x0;
+ image2d<V> min_locals(ima.domain());
+ image2d<V> u = clone(ima);
+ border::fill(u, 0);
+
+ //std::cout << "image U:" << std::endl;
+ // debug::println_with_border(u);
+ image2d<bool> tagged(ima.domain());
+ fllt_node(P, V)* current_region;
+
+ // INIT
+ R.clear();
+ N.clear();
+ A.clear();
+ g= 0;
+ gn = 0;
+ current_region = 0;
+
+ level::fill(regions, 0);
+ level::fill(tagged, false);
+
+ // Get the locals extremums
+ unsigned nlabels;
+ F::regional_extremum(ima, F::reg_nbh(), min_locals, nlabels);
+
+ // debug::println(min_locals);
+ // debug::println(min_locals | (pw::value(min_locals) > pw::cst(0)));
+
+ /// Algorithm.
+ {
+ // For all locals extremums
+ //void* x = min_locals | (pw::value(min_locals) > pw::cst(0));
+ I_IF min_locals_list(min_locals | (pw::value(min_locals) > pw::cst(0)));
+ mln_piter(I_IF) p(min_locals_list.domain());
+ for_all(p)
+ {
+ if (tagged(p))
+ continue;
+
+ step1(ima, p, g, x0);
+ step2(A, R, N, x0);
+ while (1)
+ {
+ //std::cout << "g = " << g << std::endl;
+ step3<V, P, F>(u, tagged, A, R, N, gn);
+ /// step4.
+ if (F::compare(g, gn))
+ {
+ step4_1<V, P, F>(u, A, R, N, g, gn, current_region, regions);
+ // GO TO 3)
+ continue;
+ }
+
+
+ if (g == gn)
+ {
+ step4_2(u, A, N, g, current_region, regions);
+ // GO TO 3)
+ continue;
+ }
+
+
+ if (!F::compare(g, gn))
+ {
+ step4_3(u, tagged, R, g);
+ // GO TO 1)
+ break;
+ }
+ }
+ //std::cout << "current_region = " << current_region <<
std::endl;
+ }
+ } // end of Algorithm
+ std::cout << "END OF ALGORITHM" << std::endl;
+
+ image2d<value::int_u8> output (ima.domain ());
+ fllt_tree(P, V)& tree = *new fllt_tree(P, V)(current_region);
+ util::tree_to_image (tree, output);
+
+ util::display_tree(ima, tree);
+
+ // debug::println(output);
+ // std::cout << std::endl;
+ // debug::println(ima);
+
+ // if (output != ima)
+ // {
+ // std::cerr << "BUG!!!" << std::endl;
+ // abort();
+ // }
+
+ io::pgm::save(output, "out.pgm");
+ std::cout << "out.pgm generate"
+ << std::endl;
+
+
+ // debug::println(regions);
+ //debug::println(ima | regions(make:defined reference to
`mln::fllt::lower<mln::value::int_u<8u>
>::inc':point2d(-4,-1))->elt().points);
+
+ return (tree);
+
+ } // end of compute_level_set
+
+ // LOWER LEVEL SET : region = c4, border = c8
+ template <typename V>
+ struct lower
+ {
+ static bool
+ compare(const V& u, const V& v)
+ {
+ return u < v;
+ }
+
+ template <typename I, typename N, typename O>
+ static bool
+ regional_extremum(const Image<I>& input, const Neighborhood<N>&
nbh,
+ Image<O>& output, unsigned& nlabels)
+ {
+ return labeling::regional_minima(input, nbh,
+ output, nlabels);
+ }
+
+ static const int inc = 1;
+ static const bool parent_is_brighter = true;
+ typedef accu::min accu_for_gn;
+
+ static const neighb2d& bdr_nbh() { return c8(); }
+ static const neighb2d& reg_nbh() { return c4(); }
+ };
+
+
+
+ // UPPER LEVEL SET : region = c8, border = c4
+ template <typename V>
+ struct upper
+ {
+ static bool
+ compare(const V& u, const V& v)
+ {
+ return u > v;
+ }
+
+ template <typename I, typename N, typename O>
+ static bool
+ regional_extremum(const Image<I>& input, const Neighborhood<N>&
nbh,
+ Image<O>& output, unsigned& nlabels)
+ {
+ return labeling::regional_maxima(input, nbh,
+ output, nlabels);
+ }
+
+ static const int inc = -1;
+ static const bool parent_is_brighter = false;
+ typedef accu::max accu_for_gn;
+
+ static const neighb2d& bdr_nbh() { return c4(); }
+ static const neighb2d& reg_nbh() { return c8(); }
+ };
+
+ template <typename P, typename V>
+ void
+ move_shape(fllt_node(P, V)& node,
+ fllt_node(P, V)& hole,
+ fllt_tree(P, V)& tree,
+ const image2d<fllt_node(P, V)*>& low_reg,
+ const image2d<fllt_node(P, V)*>& upp_reg)
+ {
+ // node.elt().points = set::uni(hole.elt().points, node.elt().points);
+ node.add_child(&hole);
+ fill_a_shape(hole, tree, low_reg, upp_reg);
+ }
+
+ template <typename P, typename V>
+ fllt_node(P, V)*
+ find_the_hole(fllt_node(P, V)& node,
+ const P p,
+ const image2d<fllt_node(P, V)*>& other_reg)
+ {
+ fllt_node(P, V)* s = other_reg(p);
+
+ mln_assertion(s);
+ while (s->parent() && (s->parent()->elt().value <
node.elt().value))
+ {
+ mln_assertion(s);
+ s = s->parent();
+ mln_assertion(s);
+ }
+ return s;
+ }
+
+ template <typename P, typename V>
+ void
+ fill_a_shape(fllt_node(P, V)& node,
+ fllt_tree(P, V)& tree,
+ const image2d<fllt_node(P, V)*>& low_reg,
+ const image2d<fllt_node(P, V)*>& upp_reg)
+ {
+ mln_piter(set_p<P>) p(node.elt().holes);
+ for_all(p)
+ {
+ std::cout << "OK start loop" << std::endl;
+ bool h = true;
+
+ fllt_node(P, V)* hole;
+ if (node.elt().brighter)
+ hole = find_the_hole(node, point2d(p), upp_reg);
+ else
+ hole = find_the_hole(node, point2d(p), low_reg);
+
+ typename fllt_node(P, V)::children_t::iterator it;
+ for (it = node.children().begin();
+ it != node.children().end();
+ it++)
+ {
+ if (set::is_subset_of(hole->elt().points,
+ (*it)->elt().points))
+ {
+ h = false;
+ break;
+ }
+ }
+ if (h)
+ {
+ move_shape(node, *hole, tree, low_reg, upp_reg);
+ std::cout << "OK" << std::endl;
+ }
+
+ }
+ }
+
+ template <typename P, typename V>
+ fllt_tree(P, V)
+ merge_trees(fllt_tree(P, V)& lower,
+ fllt_tree(P, V)& upper,
+ const image2d<fllt_node(P, V)*>& low_reg,
+ const image2d<fllt_node(P, V)*>& upp_reg,
+ const image2d<V>& ima)
+ {
+
+ // In order to merge the trees, we only have to find for each shape S
+ // with a hole H in it whether one of its children has a hole HŽ
+ // containing H. If it is the case, we do nothing. Otherwise, we
+ // put the shape of the hole H (and all its descendants) as child of
+ // the shape .
+
+ fllt_branch_iter(P, V) p(lower.main_branch());
+ for_all(p)
+ {
+ fllt_node(P, V)& n(p);
+ fill_a_shape(n, lower, low_reg, upp_reg);
+ mln_assertion(lower.check_consistency());
+ mln_assertion(upper.check_consistency());
+ }
+
+
+ {
+ fllt_branch_iter(P, V) p(upper.main_branch());
+ for_all(p)
+ {
+ fllt_node(P, V)& n(p);
+ fill_a_shape(n, upper, low_reg, upp_reg);
+ mln_assertion(lower.check_consistency());
+ mln_assertion(upper.check_consistency());
+ }
+ }
+
+
+ typename fllt_node(P, V)::children_t::iterator it;
+ for (it = upper.root()->children().begin();
+ it != upper.root()->children().end(); )
+ {
+ lower.root()->add_child(*it);
+ }
+ mln_assertion(lower.check_consistency());
+ }
+
+
+ template <typename P, typename V>
+ void
+ visualize_deepness(image2d<value::int_u8>& output,
+ fllt_tree(P, V)& tree)
+ {
+ fllt_branch_iter(P, V) p(tree.main_branch());
+ level::fill(output, 0);
+ for_all(p)
+ {
+ //std::cout << (&*p) << ":" << p.deepness() <<
std::endl;
+ mln_piter(set_p<point2d>) q((*p).elt().points);
+ for_all(q)
+ {
+ if (output(q) < p.deepness())
+ output(q) = p.deepness();
+ }
+ }
+ }
+
+
+ template <typename P, typename V>
+ void
+ visualize_bounds(image2d<value::int_u8>& output,
+ fllt_tree(P, V)& tree,
+ unsigned limit)
+ {
+ fllt_branch_iter(P, V) p(tree.main_branch());
+ level::fill(output, 255);
+ for_all(p)
+ {
+ if ((*p).elt().points.npoints() > limit)
+ {
+ mln_piter(set_p<point2d>) q((*p).elt().points);
+ for_all(q)
+ {
+ mln_niter(neighb2d) n(c4(), q);
+ bool is_border = false;
+ for_all (n)
+ if (!((*p).elt().points).has (n))
+ is_border = true;
+ if (is_border)
+ output(q) = 0;
+ }
+ }
+ }
+ }
+
+ template <typename P, typename V>
+ void
+ draw_tree(const image2d<V>& ima,
+ fllt_tree(P, V)& tree)
+ {
+ fllt_branch_iter(P, V) p(tree.main_branch());
+ for_all(p)
+ {
+ std::cout << "region mere : " << (*p).parent() <<
std::endl;
+ std::cout << " ^" << std::endl;
+ std::cout << " |" << std::endl;
+ std::cout << "region : " << &*p
+ << " value = " << (*p).elt().value << std::endl
+ << " holes : "
+ << (*p).elt().holes.npoints() << std::endl;
+
+ debug::println(ima | (*p).elt().points);
+ std::cout << std::endl;
+ }
+ }
+
+ template <typename V>
+ // Fixme : return type
+ void
+ fllt(const image2d<V>& ima)
+ {
+ typedef point2d P;
+
+ fllt_tree(P, V) upper_tree;
+ fllt_tree(P, V) lower_tree;
+ image2d<fllt_node(P, V)*> low_reg(ima.domain());
+ image2d<fllt_node(P, V)*> upp_reg(ima.domain());
+
+ std::cout << "1/ Compute the lower level set." << std::endl;
+ lower_tree = compute_level_set<V, lower<V> >(ima, low_reg);
+ draw_tree(ima, lower_tree);
+ std::cout << "2/ Compute the upper level set." << std::endl;
+ upper_tree = compute_level_set<V, upper<V> >(ima, upp_reg);
+
+ draw_tree(ima, upper_tree);
+
+ std::cout << "3/ Merge the two trees." << std::endl;
+ fllt_tree(P, V) result_tree = merge_trees(lower_tree, upper_tree, low_reg, upp_reg,
ima);
+
+
+ std::cout << "4/ Generate outputs." << std::endl;
+
+ image2d<value::int_u8> output (ima.domain ());
+ util::tree_to_image (lower_tree, output);
+
+// if (output != ima)
+// {
+// std::cerr << "BUG!!!" << std::endl;
+// abort();
+// }
+
+
+ // io::pgm::save(output, "out_final.pgm");
+ // std::cout << "out_final.pgm generate"
+ // << std::endl;
+
+
+ // util::display_tree(ima, lower_tree);
+ draw_tree(ima, lower_tree);
+ // image2d<value::int_u8> viz(ima.domain());
+ // image2d<value::int_u8> viz2(ima.domain());
+
+ // visualize_deepness(viz, lower_tree);
+ // level::stretch(viz, viz2);
+ // debug::println(viz);
+ // debug::println(viz2);
+ // io::pgm::save(viz2, "fllt.pgm");
+
+ // visualize_bounds(viz, lower_tree, 2000);
+ // debug::println(viz);
+ // io::pgm::save(viz, "fllt_bounds.pgm");
+ }
+
+ } // end of namespace mln::fllt
+
+} // end of namespace mln
+
+
+
+#endif // ! MLN_FIXME_FLLT_HH