* gaussian.sh: New gnuplot shell file.
* guassian2d.sh: New gnuplot shell file.
* test_labelling.cc: New source.
* tests/clustering/k_mean/Makefile.am: New makefile.
* tests/clustering/k_mean/k_mean.cc: New source.
* tests/clustering/kmean1d/Makefile.am: New makefile.
* tests/clustering/kmean1d/kmean1d.cc: New source.
* tests/io/plot/save_image_sh/Makefile.am: New makefile.
* tests/io/plot/save_image_sh/save_image_sh.cc: New source.
---
scribo/sandbox/green/ChangeLog | 14 +
.../histo1d => scribo/sandbox/green}/gaussian.sh | 0
.../histo2d => scribo/sandbox/green}/gaussian2d.sh | 0
scribo/sandbox/green/test_labelling.cc | 336 ++++++++++++++++++++
.../green/tests/clustering/k_mean/Makefile.am | 0
.../green/tests/clustering/k_mean/k_mean.cc | 0
.../green/tests/clustering/kmean1d/Makefile.am | 0
.../green/tests/clustering/kmean1d/kmean1d.cc | 0
.../green/tests/io/plot/save_image_sh}/Makefile.am | 0
.../tests/io/plot/save_image_sh/save_image_sh.cc | 0
10 files changed, 350 insertions(+), 0 deletions(-)
copy {milena/sandbox/green/tests/accu/stat/histo1d => scribo/sandbox/green}/gaussian.sh (100%)
copy {milena/sandbox/green/tests/accu/stat/histo2d => scribo/sandbox/green}/gaussian2d.sh (100%)
create mode 100644 scribo/sandbox/green/test_labelling.cc
copy {milena => scribo}/sandbox/green/tests/clustering/k_mean/Makefile.am (100%)
copy {milena => scribo}/sandbox/green/tests/clustering/k_mean/k_mean.cc (100%)
copy {milena => scribo}/sandbox/green/tests/clustering/kmean1d/Makefile.am (100%)
copy {milena => scribo}/sandbox/green/tests/clustering/kmean1d/kmean1d.cc (100%)
copy {milena/sandbox/green/doc/examples/frac => scribo/sandbox/green/tests/io/plot/save_image_sh}/Makefile.am (100%)
copy {milena => scribo}/sandbox/green/tests/io/plot/save_image_sh/save_image_sh.cc (100%)
diff --git a/scribo/sandbox/green/ChangeLog b/scribo/sandbox/green/ChangeLog
index 8f5101b..db589a1 100644
--- a/scribo/sandbox/green/ChangeLog
+++ b/scribo/sandbox/green/ChangeLog
@@ -2,6 +2,20 @@
Import files from milena/sandbox/green.
+ * gaussian.sh: New gnuplot shell file.
+ * guassian2d.sh: New gnuplot shell file.
+ * test_labelling.cc: New source.
+ * tests/clustering/k_mean/Makefile.am: New makefile.
+ * tests/clustering/k_mean/k_mean.cc: New source.
+ * tests/clustering/kmean1d/Makefile.am: New makefile.
+ * tests/clustering/kmean1d/kmean1d.cc: New source.
+ * tests/io/plot/save_image_sh/Makefile.am: New makefile.
+ * tests/io/plot/save_image_sh/save_image_sh.cc: New source.
+
+2010-06-24 Yann Jacquelet <jacquelet(a)lrde.epita.fr>
+
+ Import files from milena/sandbox/green.
+
* mln/accu/stat/histo1d.hh: New header file.
* mln/accu/stat/histo2d.hh: New header file.
* mln/accu/stat/histo3d_hsl.hh: New header file.
diff --git a/milena/sandbox/green/tests/accu/stat/histo1d/gaussian.sh b/scribo/sandbox/green/gaussian.sh
similarity index 100%
copy from milena/sandbox/green/tests/accu/stat/histo1d/gaussian.sh
copy to scribo/sandbox/green/gaussian.sh
diff --git a/milena/sandbox/green/tests/accu/stat/histo2d/gaussian2d.sh b/scribo/sandbox/green/gaussian2d.sh
similarity index 100%
copy from milena/sandbox/green/tests/accu/stat/histo2d/gaussian2d.sh
copy to scribo/sandbox/green/gaussian2d.sh
diff --git a/scribo/sandbox/green/test_labelling.cc b/scribo/sandbox/green/test_labelling.cc
new file mode 100644
index 0000000..6238d2b
--- /dev/null
+++ b/scribo/sandbox/green/test_labelling.cc
@@ -0,0 +1,336 @@
+// Copyright (C) 2007, 2008, 2009, 2010 EPITA LRDE
+//
+// This file is part of Olena.
+//
+// Olena is free software: you can redistribute it and/or modify it under
+// the terms of the GNU General Public License as published by the Free
+// Software Foundation, version 2 of the License.
+//
+// Olena is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with Olena. If not, see <http://www.gnu.org/licenses/>.
+//
+// As a special exception, you may use this file as part of a free
+// software project without restriction. Specifically, if other files
+// instantiate templates or use macros or inline functions from this
+// file, or you compile this file and link it with other files to produce
+// an executable, this file does not by itself cause the resulting
+// executable to be covered by the GNU General Public License. This
+// exception does not however invalidate any other reasons why the
+// executable file might be covered by the GNU General Public License.
+
+
+#include <mln/io/plot/save_histo_sh.hh>
+#include <mln/value/rgb8.hh>
+#include <mln/value/label_8.hh>
+#include <mln/core/alias/neighb1d.hh>
+#include <mln/core/image/dmorph/image_if.hh>
+#include <mln/labeling/colorize.hh>
+#include <mln/labeling/mean_values.hh>
+#include <mln/labeling/regional_maxima.hh>
+#include <mln/make/w_window1d.hh>
+#include <mln/math/pi.hh>
+#include <mln/morpho/watershed/flooding.hh>
+#include <mln/morpho/elementary/dilation.hh>
+#include <mln/morpho/elementary/closing.hh>
+#include <mln/pw/value.hh>
+#include <mln/linear/convolve.hh>
+#include <mln/linear/gaussian.hh>
+
+
+/// ... to complete
+
+/// \brief Compute the gaussian probability to obtain a given value.
+///
+/// \param[in] x the value from which we want the probability.
+/// \param[in] mean the mean parameter of the gaussian distribution.
+/// \param[in] sigma the sqrt(variance) parameter of the gaussian.
+/// \return the probability to obtain the x value.
+///
+/// Implements the standard equation of the gaussian.
+
+double gaussian_distribution(const double x,
+ const double mean,
+ const double sigma)
+{
+ double num = exp(-0.5*mln::math::sqr((x - mean)/sigma));
+ double denom = sigma*mln::math::sqrt(2*mln::math::pi);
+ double result = num/denom;
+
+ return result;
+}
+
+/// \brief Make a 1d gaussian filter.
+///
+/// \param[out] ws the window (filter) where to put the probability values.
+/// \param[in] size the size of the filter.
+/// \param[in] sigma the gaussian parameter for the standard deviation.
+/// \return the probability to obtain the x value.
+///
+/// Approach the gaussian distribution for a few discrete sites, and
+/// then normilize the results to be sure that the sum obtain 1.
+
+void gaussian_filter(double ws[], const unsigned size, const double sigma)
+{
+ int h = size/2;
+
+ for (int i = -h; i <= h; ++i)
+ {
+ ws[i+h] = gaussian_distribution(i, 0.0, sigma);
+ }
+
+ double sum = 0.0;
+
+ for (unsigned i = 0; i < size; ++i)
+ sum += ws[i];
+
+ for (unsigned i = 0; i < size; ++i)
+ ws[i] /= sum;
+}
+
+/// \brief Make a 1d gaussian filter.
+///
+/// \param[out] ws the window (filter) where to put the probability values.
+/// \param[in] size the size of the filter.
+/// \param[in] sigma the gaussian parameter for the standard deviation.
+/// \return the probability to obtain the x value.
+///
+/// Approach the gaussian distribution for a few discrete sites, and
+/// then normilize the results to be sure that the sum obtain 1.
+
+/// The aim of this function is to rebuild an label image2d from the segmenting
+/// image of the histogram (label) and the original image (input).
+/// label_image2d / for each grey tone, associate its label.
+
+mln::image2d<mln::value::label_8>
+build_8bits(const mln::image2d<mln::value::int_u8>& input,
+ const mln::image1d<mln::value::label_8>& label)
+{
+ mln::trace::entering("build_8bits");
+ mln_precondition(label.is_valid());
+ mln_precondition(input.is_valid());
+
+ mln::image2d<mln::value::label_8> output;
+
+ mln::initialize(output, input);
+
+ mln_piter_(mln::image2d<mln::value::int_u8>) pi(input.domain());
+ mln_piter_(mln::image2d<mln::value::label_8>) po(output.domain());
+
+ for_all_2(pi, po)
+ {
+ mln::value::int_u8 val = input(pi);
+ unsigned grp = label(mln::point1d(val));
+
+ output(po) = grp;
+ }
+
+ mln::trace::exiting("build_8bits");
+ return output;
+}
+
+
+void test_8bits_classifying()
+{
+ typedef mln::value::int_u8 int_u8;
+ typedef mln::value::label_8 label_8;
+ typedef mln::value::rgb8 rgb8;
+ typedef mln::accu::stat::mean<double> mean;
+
+ mln::image2d<int_u8> img_ref;
+ mln::image2d<int_u8> img_out;
+ mln::image2d<rgb8> img_rgb;
+ mln::image1d<unsigned> img_res;
+ mln::image1d<double> img_smooth;
+ mln::image1d<label_8> labels;
+ label_8 nlabels;
+
+ //-----------------------------------------------------
+ // Loading the scribo image and computing its histogram
+ //-----------------------------------------------------
+
+ std::cout << "(08 bits) LOADING HISTOGRAM" << std::endl;
+
+ // mln::io::pgm::load(img_ref, OLENA_IMG_PATH"/lena.pgm");
+ mln::io::pgm::load(img_ref, SCRIBO_IMG_PATH"/mp00082c_50p_8bits.pgm");
+ img_res = mln::data::compute(mln::accu::stat::histo1d<int_u8>(), img_ref);
+ mln::io::plot::save_histo_sh(img_res, "histo0_8bits.sh");
+
+
+ //-----------------------------------------------------
+ // Smoothing the histogram with a gaussian filter
+ //-----------------------------------------------------
+
+ std::cout << "(08 bits) SMOOTHING HISTOGRAM" << std::endl;
+
+ double ws[41];
+ gaussian_filter(ws, 41, 6.0);
+ img_smooth = mln::linear::convolve(img_res, mln::make::w_window1d(ws));
+ mln::io::plot::save_histo_sh(img_smooth, "histo1_8bits.sh");
+
+
+ //-----------------------------------------------------
+ // Segmenting the histogram with the watershed method
+ //-----------------------------------------------------
+
+ std::cout << "SEGMENTING HISTOGRAM" << std::endl;
+
+ /*
+ labels = mln::labeling::regional_maxima(img_smooth, mln::c2(), nlabels);
+ std::cout << "N labels : " << nlabels << std::endl;
+ mln::io::plot::save_histo_sh(labels, "histo2_8bits.sh");
+ */
+
+ // need to revert the histogram
+ labels = mln::morpho::watershed::flooding(img_smooth, mln::c2(), nlabels);
+ std::cout << "N labels : " << nlabels << std::endl;
+ mln::io::plot::save_histo_sh(labels, "histo2_8bits.sh");
+
+
+ //-----------------------------------------------------
+ // Rebuilding the image with the mean of each region
+ //-----------------------------------------------------
+
+ std::cout << "(08 bits) BUILDING OUTPUT" << std::endl;
+
+ mln::image2d<label_8>img_label = build_8bits(img_ref, labels);
+
+ std::cout << "(08 bits) COLORING OUTPUT" << std::endl;
+
+ img_out = mln::labeling::mean_values(img_ref, img_label, nlabels);
+ img_rgb = mln::labeling::colorize(rgb8(), img_label);
+
+ mln::io::pgm::save(img_out, "out_8bits.pgm");
+ mln::io::ppm::save(img_rgb, "color_8bits.pgm");
+
+ //labels = mln::morpho::elementary::dilation(labels, mln::c2());
+ //mln::io::plot::save_histo_sh(labels, "histo3.sh");
+ //mln::io::plot::save(labels, "labelized.data");
+}
+
+
+/// The aim of this function is to rebuild an label image2d from the segmenting
+/// image of the histogram (label) and the original image (input).
+/// label_image2d / for each grey tone, associate its label.
+
+mln::image2d<mln::value::label_8>
+build_14bits(const mln::image2d<mln::value::int_u<14> >& input,
+ const mln::image1d<mln::value::label_8>& label)
+{
+ mln::trace::entering("build_14bits");
+ mln_precondition(label.is_valid());
+ mln_precondition(input.is_valid());
+
+ mln::image2d<mln::value::label_8> output;
+
+ mln::initialize(output, input);
+
+ mln_piter_(mln::image2d<mln::value::int_u<14> >) pi(input.domain());
+ mln_piter_(mln::image2d<mln::value::label_8>) po(output.domain());
+
+ for_all_2(pi, po)
+ {
+ mln::value::int_u<14> val = input(pi);
+ unsigned grp = label(mln::point1d(val));
+
+ output(po) = grp;
+ }
+
+ mln::trace::exiting("build_14bits");
+ return output;
+}
+
+
+void test_14bits_classifying()
+{
+ typedef mln::value::int_u16 int_u16;
+ typedef mln::value::int_u<14> int_u14;
+ typedef mln::value::label_8 label_8;
+ typedef mln::value::rgb8 rgb8;
+ typedef mln::accu::stat::mean<double> mean;
+
+ mln::image2d<int_u16> img_fst;
+ mln::image2d<int_u14> img_ref;
+ mln::image2d<int_u14> img_out;
+ mln::image2d<rgb8> img_rgb;
+ mln::image1d<unsigned> img_res;
+ mln::image1d<double> img_smooth;
+ mln::image1d<label_8> labels;
+ label_8 nlabels;
+
+ //-----------------------------------------------------
+ // Loading the scribo image and computing its histogram
+ //-----------------------------------------------------
+
+ std::cout << "(14 bits) LOADING HISTOGRAM" << std::endl;
+
+ //mln::io::pgm::load(img_fst, OLENA_IMG_PATH"/lena_16.pgm");
+ mln::io::pgm::load(img_fst, SCRIBO_IMG_PATH"/mp00082c_50p_16bits.pgm");
+ img_ref = mln::data::transform(img_fst, mln::fun::v2v::int_u16_to_int_u14());
+ img_res = mln::data::compute(mln::accu::stat::histo1d<int_u14>(), img_ref);
+ mln::io::plot::save_histo_sh(img_res, "histo0_14bits.sh");
+
+
+ //-----------------------------------------------------
+ // Smoothing the histogram with a gaussian filter
+ //-----------------------------------------------------
+
+ std::cout << "(14 bits) SMOOTHING HISTOGRAM" << std::endl;
+
+ double ws[401];
+ gaussian_filter(ws, 401, 50.0);
+ img_smooth = mln::linear::convolve(img_res, mln::make::w_window1d(ws));
+ mln::io::plot::save_histo_sh(img_smooth, "histo1_14bits.sh");
+
+
+ //-----------------------------------------------------
+ // Segmenting the histogram with the watershed method
+ //-----------------------------------------------------
+
+ std::cout << "(14 bits) SEGMENTING HISTOGRAM" << std::endl;
+
+ /*
+ labels = mln::labeling::regional_maxima(img_smooth, mln::c2(), nlabels);
+ std::cout << "N labels : " << nlabels << std::endl;
+ mln::io::plot::save_histo_sh(labels, "histo2.sh");
+ */
+
+
+ labels = mln::morpho::watershed::flooding(img_smooth, mln::c2(), nlabels);
+ std::cout << "N labels : " << nlabels << std::endl;
+ mln::io::plot::save_histo_sh(labels, "histo2_14bits.sh");
+
+
+ //-----------------------------------------------------
+ // Rebuilding the image with the mean of each region
+ //-----------------------------------------------------
+
+ std::cout << "(14 bits) BUILDING OUTPUT" << std::endl;
+
+ mln::image2d<label_8>img_label = build_14bits(img_ref, labels);
+
+ std::cout << "(14 bits) COLORING OUTPUT" << std::endl;
+
+ img_out = mln::labeling::mean_values(img_ref, img_label, nlabels);
+ img_rgb = mln::labeling::colorize(rgb8(), img_label);
+
+ mln::io::pgm::save(img_out, "out_14bits.pgm");
+ mln::io::ppm::save(img_rgb, "color_14bits.pgm");
+
+ //labels = mln::morpho::elementary::dilation(labels, mln::c2());
+ //mln::io::plot::save_histo_sh(labels, "histo3.sh");
+ //mln::io::plot::save(labels, "labelized.data");
+}
+
+int main()
+{
+ test_8bits_classifying();
+
+ test_14bits_classifying();
+
+ return 0;
+}
diff --git a/milena/sandbox/green/tests/clustering/k_mean/Makefile.am b/scribo/sandbox/green/tests/clustering/k_mean/Makefile.am
similarity index 100%
copy from milena/sandbox/green/tests/clustering/k_mean/Makefile.am
copy to scribo/sandbox/green/tests/clustering/k_mean/Makefile.am
diff --git a/milena/sandbox/green/tests/clustering/k_mean/k_mean.cc b/scribo/sandbox/green/tests/clustering/k_mean/k_mean.cc
similarity index 100%
copy from milena/sandbox/green/tests/clustering/k_mean/k_mean.cc
copy to scribo/sandbox/green/tests/clustering/k_mean/k_mean.cc
diff --git a/milena/sandbox/green/tests/clustering/kmean1d/Makefile.am b/scribo/sandbox/green/tests/clustering/kmean1d/Makefile.am
similarity index 100%
copy from milena/sandbox/green/tests/clustering/kmean1d/Makefile.am
copy to scribo/sandbox/green/tests/clustering/kmean1d/Makefile.am
diff --git a/milena/sandbox/green/tests/clustering/kmean1d/kmean1d.cc b/scribo/sandbox/green/tests/clustering/kmean1d/kmean1d.cc
similarity index 100%
copy from milena/sandbox/green/tests/clustering/kmean1d/kmean1d.cc
copy to scribo/sandbox/green/tests/clustering/kmean1d/kmean1d.cc
diff --git a/milena/sandbox/green/doc/examples/frac/Makefile.am b/scribo/sandbox/green/tests/io/plot/save_image_sh/Makefile.am
similarity index 100%
copy from milena/sandbox/green/doc/examples/frac/Makefile.am
copy to scribo/sandbox/green/tests/io/plot/save_image_sh/Makefile.am
diff --git a/milena/sandbox/green/tests/io/plot/save_image_sh/save_image_sh.cc b/scribo/sandbox/green/tests/io/plot/save_image_sh/save_image_sh.cc
similarity index 100%
copy from milena/sandbox/green/tests/io/plot/save_image_sh/save_image_sh.cc
copy to scribo/sandbox/green/tests/io/plot/save_image_sh/save_image_sh.cc
--
1.5.6.5