LRE
Sign In
Sign Up
Sign In
Sign Up
Manage this list
×
Keyboard Shortcuts
Thread View
j
: Next unread message
k
: Previous unread message
j a
: Jump to all threads
j l
: Jump to MailingList overview
2024
December
November
October
September
August
July
June
May
April
March
February
January
2023
December
November
October
September
August
July
June
May
April
March
February
January
2022
December
November
October
September
August
July
June
May
April
March
February
January
2021
December
November
October
September
August
July
June
May
April
March
February
January
2020
December
November
October
September
August
July
June
May
April
March
February
January
2019
December
November
October
September
August
July
June
May
April
March
February
January
2018
December
November
October
September
August
July
June
May
April
March
February
January
2017
December
November
October
September
August
July
June
May
April
March
February
January
2016
December
November
October
September
August
July
June
May
April
March
February
January
2015
December
November
October
September
August
July
June
May
April
March
February
January
2014
December
November
October
September
August
July
June
May
April
March
February
January
2013
December
November
October
September
August
July
June
May
April
March
February
January
2012
December
November
October
September
August
July
June
May
April
March
February
January
2011
December
November
October
September
August
July
June
May
April
March
February
January
2010
December
November
October
September
August
July
June
May
April
March
February
January
2009
December
November
October
September
August
July
June
May
April
March
February
January
2008
December
November
October
September
August
July
June
May
April
March
February
January
2007
December
November
October
September
August
July
June
May
April
March
February
January
2006
December
November
October
September
August
July
June
May
April
March
February
January
2005
December
November
October
September
August
July
June
May
April
March
February
January
2004
December
November
October
September
August
July
June
May
April
March
List overview
Download
Olena-patches
November 2010
----- 2024 -----
December 2024
November 2024
October 2024
September 2024
August 2024
July 2024
June 2024
May 2024
April 2024
March 2024
February 2024
January 2024
----- 2023 -----
December 2023
November 2023
October 2023
September 2023
August 2023
July 2023
June 2023
May 2023
April 2023
March 2023
February 2023
January 2023
----- 2022 -----
December 2022
November 2022
October 2022
September 2022
August 2022
July 2022
June 2022
May 2022
April 2022
March 2022
February 2022
January 2022
----- 2021 -----
December 2021
November 2021
October 2021
September 2021
August 2021
July 2021
June 2021
May 2021
April 2021
March 2021
February 2021
January 2021
----- 2020 -----
December 2020
November 2020
October 2020
September 2020
August 2020
July 2020
June 2020
May 2020
April 2020
March 2020
February 2020
January 2020
----- 2019 -----
December 2019
November 2019
October 2019
September 2019
August 2019
July 2019
June 2019
May 2019
April 2019
March 2019
February 2019
January 2019
----- 2018 -----
December 2018
November 2018
October 2018
September 2018
August 2018
July 2018
June 2018
May 2018
April 2018
March 2018
February 2018
January 2018
----- 2017 -----
December 2017
November 2017
October 2017
September 2017
August 2017
July 2017
June 2017
May 2017
April 2017
March 2017
February 2017
January 2017
----- 2016 -----
December 2016
November 2016
October 2016
September 2016
August 2016
July 2016
June 2016
May 2016
April 2016
March 2016
February 2016
January 2016
----- 2015 -----
December 2015
November 2015
October 2015
September 2015
August 2015
July 2015
June 2015
May 2015
April 2015
March 2015
February 2015
January 2015
----- 2014 -----
December 2014
November 2014
October 2014
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
----- 2013 -----
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
----- 2012 -----
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
----- 2011 -----
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
----- 2010 -----
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
----- 2009 -----
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
----- 2008 -----
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
----- 2007 -----
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007
May 2007
April 2007
March 2007
February 2007
January 2007
----- 2006 -----
December 2006
November 2006
October 2006
September 2006
August 2006
July 2006
June 2006
May 2006
April 2006
March 2006
February 2006
January 2006
----- 2005 -----
December 2005
November 2005
October 2005
September 2005
August 2005
July 2005
June 2005
May 2005
April 2005
March 2005
February 2005
January 2005
----- 2004 -----
December 2004
November 2004
October 2004
September 2004
August 2004
July 2004
June 2004
May 2004
April 2004
March 2004
olena-patches@lrde.epita.fr
7 participants
370 discussions
Start a n
N
ew thread
last-svn-commit-32-g174b917 Benchmark few descriptors.
by Yann Jacquelet
* green/exp/annotating/bench: New directory. * green/exp/annotating/bench/Makefile.am: New Makefile. * green/exp/annotating/bench/bench.cc: New source. --- milena/sandbox/ChangeLog | 8 + .../annotating/{achromastism => bench}/Makefile.am | 0 milena/sandbox/green/exp/annotating/bench/bench.cc | 1213 ++++++++++++++++++++ 3 files changed, 1221 insertions(+), 0 deletions(-) copy milena/sandbox/green/exp/annotating/{achromastism => bench}/Makefile.am (100%) create mode 100644 milena/sandbox/green/exp/annotating/bench/bench.cc diff --git a/milena/sandbox/ChangeLog b/milena/sandbox/ChangeLog index d86642a..cc4634d 100644 --- a/milena/sandbox/ChangeLog +++ b/milena/sandbox/ChangeLog @@ -1,5 +1,13 @@ 2010-06-21 Yann Jacquelet <jacquelet(a)lrde.epita.fr> + Benchmark few descriptors. + + * green/exp/annotating/bench: New directory. + * green/exp/annotating/bench/Makefile.am: New Makefile. + * green/exp/annotating/bench/bench.cc: New source. + +2010-06-21 Yann Jacquelet <jacquelet(a)lrde.epita.fr> + Test on image database the achromatism descriptor. * green/exp/annotating/achromatism/Makefile.am: New Makefile. diff --git a/milena/sandbox/green/exp/annotating/achromastism/Makefile.am b/milena/sandbox/green/exp/annotating/bench/Makefile.am similarity index 100% copy from milena/sandbox/green/exp/annotating/achromastism/Makefile.am copy to milena/sandbox/green/exp/annotating/bench/Makefile.am diff --git a/milena/sandbox/green/exp/annotating/bench/bench.cc b/milena/sandbox/green/exp/annotating/bench/bench.cc new file mode 100644 index 0000000..8e4525f --- /dev/null +++ b/milena/sandbox/green/exp/annotating/bench/bench.cc @@ -0,0 +1,1213 @@ +// BENCH TEST CF MILLET 2008 + +#include <iostream> +#include <sstream> +#include <boost/filesystem.hpp> + +#include <mln/algebra/vec.hh> + +#include <mln/img_path.hh> + +#include <mln/accu/stat/mean.hh> +#include <mln/accu/stat/histo1d.hh> + +#include <mln/arith/minus.hh> +#include <mln/arith/times.hh> +#include <mln/arith/diff_abs.hh> +#include <mln/arith/div.hh> + +#include <mln/core/image/image1d.hh> +#include <mln/core/image/image2d.hh> +#include <mln/core/image/dmorph/image_if.hh> +#include <mln/core/alias/point1d.hh> +#include <mln/core/alias/box1d.hh> + +#include <mln/data/transform.hh> +#include <mln/data/compute.hh> +#include <mln/data/convert.hh> +#include <mln/data/stretch.hh> +#include <mln/data/fill.hh> + +#include <mln/fun/v2v/component.hh> +#include <mln/fun/v2v/rgb_to_hue_map.hh> +#include <mln/fun/v2v/rgb_to_saturation_map.hh> +#include <mln/fun/v2v/rgb_to_value_map.hh> + +#include <mln/io/ppm/load.hh> +#include <mln/io/pgm/save.hh> +#include <mln/io/plot/save_image_sh.hh> + +#include <mln/literal/zero.hh> + +#include <mln/math/ceil.hh> +#include <mln/math/floor.hh> + +#include <mln/opt/at.hh> + +#include <mln/trait/value_.hh> + +#include <mln/value/rgb8.hh> + + +#include <mln/value/int_u8.hh> + +template <typename I> +mln_value(I) count_histo(const mln::Image<I>& histo_) +{ + const I& histo = exact(histo_); + + mln_precondition(histo.is_valid()); + + mln_value(I) result = mln::literal::zero; + mln_piter(I) p(histo.domain()); + + for_all(p) + result += histo(p); + + return result; +} + + +template <typename I> +mln_value(I) sum_frequency_histo(const mln::Image<I>& histo_) +{ + const I& histo = exact(histo_); + + mln_precondition(histo.is_valid()); + + mln_value(I) sum = mln::literal::zero; + mln_piter(I) p(histo.domain()); + + for_all(p) + sum += histo(p); + + return sum; +} + + +template <typename I> +mln_coord(mln_site_(I)) peak_histo(const mln::Image<I>& histo_) +{ + const I& histo = exact(histo_); + + mln_precondition(histo.is_valid()); + + // Find the peak of the histogram + mln_value(I) v_max = mln::opt::at(histo, mln::literal::zero); + mln_coord(mln_site_(I)) p_max = mln::literal::zero; + mln_piter(I) p(histo.domain()); + + for_all(p) + { + if (v_max < histo(p)) + { + v_max = histo(p); + p_max = p.ind(); + } + } + + return p_max; +} + + +//============================================================================// +// MILLET HUE DESCRIPTOR +// +// This test is used for discrimination between black and white pictures and +// color ones. Some colored Black and white pictures have their energy near +// the peak. +//============================================================================// + +float hue1_descriptor(mln::image1d<unsigned> histo, const short threshold) +{ + float cnt1; + float cnt2; + float prop; + short peak; + mln::point1d inf; + mln::point1d sup; + + peak = peak_histo(histo); + inf = mln::point1d(mln::math::max(0, peak-threshold)); + sup = mln::point1d(mln::math::min(255, peak+threshold)); + cnt1 = count_histo(histo|mln::box1d(inf,sup)); + cnt2 = count_histo(histo); + prop = ((255.0 * cnt1) / cnt2); + + return prop; +} + + +//============================================================================// +// MILLET SATURATION DESCRIPTOR +// +// This test is used for discrimination between black and white pictures and +// color ones. Black and white pictures have their energy in the low saturation +// band. +//============================================================================// + +float sat1_descriptor(mln::image1d<unsigned> histo, const short threshold) +{ + float cnt1; + float cnt2; + float result; + + cnt1 = count_histo(histo | mln::box1d(mln::point1d(0), + mln::point1d(threshold))); + cnt2 = count_histo(histo); + result = ((255.0 * cnt1) / cnt2); + + return result; + color = label_hue(peak);} + + +//============================================================================// +// MILLET DESCRIPTOR +// +// This test aims at compute the number of grey levels. Photographies tends to +// use all the levels or many of them. +//============================================================================// + +template <typename I> +mln_value(I) count_null_frequency_histo(const mln::Image<I>& histo_) +{ + const I& histo = exact(histo_); + + mln_precondition(histo.is_valid()); + + mln_value(I) count = mln::literal::zero; + mln_piter(I) p(histo.domain()); + + for_all(p) + if (0 == histo(p)) + count++; + + return count; +} + + +float lvl0_descriptor(mln::image1d<unsigned> histo) +{ + float result; + + // FIXME 255 + result = 255-count_null_frequency_histo(histo); + + return result; +} + +//============================================================================// +// DENSITY DESCRIPTOR +// +// +//============================================================================// + +template <typename I> +float cmp_equi_frequency_histo(const mln::Image<I>& histo_) +{ + const I& histo = exact(histo_); + + mln_precondition(histo.is_valid()); + + float sum = 0; + float var = 0; + + mln_piter(I) p(histo.domain()); + + for_all(p) + { + sum ++; + var += mln::math::sqr(histo(p) - (1/256.0)); + } + + var = var / sum; + + return var; +} + +float hue0_descriptor(mln::image1d<unsigned> histo) +{ + mln::image1d<float> histo_float; + float sum; + float result; + + sum = sum_frequency_histo(histo); + histo_float = mln::data::convert(float(), histo) / sum; + result = cmp_equi_frequency_histo(histo_float); + + return result*255; +} + + +float sat0_descriptor(mln::image1d<unsigned> histo) +{ + mln::image1d<float> histo_float; + float sum; + float result; + + sum = sum_frequency_histo(histo); + histo_float = mln::data::convert(float(), histo) / sum; + result = cmp_equi_frequency_histo(histo_float); + + return result*255; +} + +float val0_descriptor(mln::image1d<unsigned> histo) +{ + mln::image1d<float> histo_float; + float sum; + float result; + + sum = sum_frequency_histo(histo); + histo_float = mln::data::convert(float(), histo) / sum; + result = cmp_equi_frequency_histo(histo_float); + + return result*255; +} + +//============================================================================// +// MILLET DESCRIPTOR +// +// This test aims at compute some deviation on the peak of the histogram of +// the image. Large deviations mean lots of graduation in colors (such as +// photos) and small ones mean something like cartoon. +//============================================================================// + + +// calcul de contribution +float r(short p, unsigned histo_p, short x, unsigned histo_x) +{ + float result = mln::math::sqr(((float)histo_x / histo_p) * (x-p)); + + return result; +} + +template <typename I> +float stddev3(const mln::Image<I>& histo_, unsigned peak) +{ + const I& histo = exact(histo_); + + mln_precondition(histo.is_valid()); + + // Compute stddev + + float stddev = 0.0; + + mln_piter(I) p(histo.domain()); + + for_all(p) + { + stddev += r((short)peak, mln::opt::at(histo,peak), p.ind(), histo(p)); + } + + return stddev; +} + +template <typename I> +float stddev2(const mln::Image<I>& histo_, unsigned peak, unsigned limit) +{ + const I& histo = exact(histo_); + + mln_precondition(histo.is_valid()); + + float stddev_low = 0.0; + float stddev_up = 0.0; + float ret = 0.0; + + // A transformer avec des iterators + + if (250 > peak) + stddev_up = stddev3(histo |mln::box1d(mln::point1d(peak+1), + mln::point1d(peak+limit)), peak); + + if (5 < peak) + stddev_low = stddev3(histo |mln::box1d(mln::point1d(peak-limit), + mln::point1d(peak-1)), peak); + + ret = (250 < peak)? stddev_low : (5 > peak)? stddev_up : + (stddev_low + stddev_up)/2; + + return ret; +} + +float var0_descriptor(mln::image1d<unsigned> histo, const short threshold) +{ + typedef mln::fun::v2v::rgb_to_value_map<8> t_rgb_to_value_map; + + float result; + short peak; + + peak = peak_histo(histo); + result = stddev2(histo, peak, threshold); + + return result; +} + + +//============================================================================// +// ERROR DESCRIPTOR +//============================================================================// + + +float err_descriptor(mln::image2d<mln::value::int_u8> r_img_map, + mln::image2d<mln::value::int_u8> g_img_map, + mln::image2d<mln::value::int_u8> b_img_map, + mln::image2d<mln::value::int_u8> r_rdc_map, + mln::image2d<mln::value::int_u8> g_rdc_map, + mln::image2d<mln::value::int_u8> b_rdc_map) + + +{ + typedef mln::accu::meta::stat::mean t_mean; + typedef mln::image2d<mln::value::int_u8> t_map; + typedef mln_trait_op_minus_(t_map,t_map) t_minus; + typedef mln_trait_op_times_(t_minus,t_minus) t_times; + + + t_minus minus_red; + t_minus minus_green; + t_minus minus_blue; + + t_times times_red; + t_times times_green; + t_times times_blue; + + float error_red; + float error_green; + float error_blue; + + float error; + + minus_red = (r_img_map - r_rdc_map); + times_red = minus_red * minus_red; + + minus_green = (g_img_map - g_rdc_map); + times_green = minus_green * minus_green; + + minus_blue = (b_img_map - b_rdc_map); + times_blue = minus_blue * minus_blue; + + error_red = mln::data::compute(t_mean(), times_red); + error_green = mln::data::compute(t_mean(), times_green); + error_blue = mln::data::compute(t_mean(), times_blue); + + error = (error_red + error_green + error_blue)/3.0; + error = mln::math::sqrt(error); + error = 20 * log(255/error); + +// Le PNSNR semble offrir plus d'espace pour la discrimination +// Si les images sont identiques ==> PNSNR = +inf +// Si les images sont très différentes ==> PNSNR = 0 + // FIXME METTRE UN MAX A 255 + + return error; +} + + + +//============================================================================// +// CLASSIFICATION DE FISHER EN 2 CLASSES SUR UN HISTO 1D +//============================================================================// + +template <typename I> +mln_value(I) cnt_histo(const mln::Image<I>& histo_) +{ + const I& histo = exact(histo_); + + mln_precondition(histo.is_valid()); + + mln_value(I) sum = mln::literal::zero; + mln_piter(I) p(histo.domain()); + + for_all(p) + { + sum += histo(p); + } + + return sum; +} + +template <typename I> +mln_value(I) sum_histo(const mln::Image<I>& histo_) +{ + const I& histo = exact(histo_); + + mln_precondition(histo.is_valid()); + + mln_value(I) pos = mln::literal::zero; + mln_value(I) sum = mln::literal::zero; + mln_piter(I) p(histo.domain()); + + for_all(p) + { + pos = p.ind(); + sum += pos*histo(p); + } + + return sum; +} + +template <typename I> +mln_value(I) avg_histo(const mln::Image<I>& histo_) +{ + const I& histo = exact(histo_); + + mln_precondition(histo.is_valid()); + + mln_value(I) pos = mln::literal::zero; + mln_value(I) sum = mln::literal::zero; + mln_value(I) cnt = mln::literal::zero; + mln_piter(I) p(histo.domain()); + + for_all(p) + { + pos = p.ind(); + cnt += histo(p); + sum += pos*histo(p); + } + + return (0 == cnt)? 0 : sum/cnt; +} + +template <typename I> +mln_value(I) var3_histo(const mln::Image<I>& histo_, float mean) +{ + const I& histo = exact(histo_); + + mln_precondition(histo.is_valid()); + + mln_value(I) pos = mln::literal::zero; + mln_value(I) sum = mln::literal::zero; + mln_value(I) cnt = mln::literal::zero; + mln_piter(I) p(histo.domain()); + + for_all(p) + { + cnt += histo(p); + sum += (mln::math::sqr(p.ind()-mean)*histo(p)); + } + + return (0 == cnt)? 0 : sum/cnt; +} + +template <typename I> +mln_value(I) var2_histo(const mln::Image<I>& histo_, float mean) +{ + const I& histo = exact(histo_); + + mln_precondition(histo.is_valid()); + + mln_value(I) pos = mln::literal::zero; + mln_value(I) sum = mln::literal::zero; + mln_value(I) sqr = mln::literal::zero; + mln_value(I) cnt = mln::literal::zero; + mln_value(I) dlt = mln::literal::zero; + mln_value(I) mxt = mln::literal::zero; + mln_piter(I) p(histo.domain()); + + for_all(p) + { + pos = p.ind(); + cnt += (histo(p)); + sum += (histo(p)*pos); + mxt += (histo(p)*pos*mean); + sqr += (histo(p)*mln::math::sqr(pos)); + dlt += (histo(p)*mln::math::sqr(pos - mean)); + + std::cout << "p = " << pos << std::endl; + std::cout << "p² = " << mln::math::sqr(pos) << std::endl; + std::cout << "p*mean = " << (pos*mean) << std::endl; + std::cout << "p-mean = " << (pos-mean) << std::endl; + std::cout << "(p-mean)² = " << mln::math::sqr(pos-mean) << std::endl; + std::cout << "histo(p) = " << histo(p) << std::endl; + std::cout << "histo(p)*p = " << (pos*histo(p)) << std::endl; + std::cout << "histo(p)*p²= " << (mln::math::sqr(pos)*histo(p)) + << std::endl; + std::cout << "cnt = " << cnt << std::endl; + std::cout << "sum = " << sum << std::endl; + std::cout << "sqr = " << sqr << std::endl; + std::cout << "dlt = " << dlt << std::endl; + std::cout << "mxt = " << mxt << std::endl; + std::cout << std::endl; + } + + std::cout << "sqr/cnt = " << (sqr/cnt) << std::endl; + std::cout << "sum/cnt = " << (sum/cnt) << std::endl; + std::cout << "(sum/cnt)² = " << mln::math::sqr(sum/cnt) << std::endl; + std::cout << "dlt/cnt = " << dlt/cnt << std::endl; + std::cout << "mxt/cnt = " << mxt/cnt << std::endl; + std::cout << std::endl; + + std::cout << "sqr = " + << (sqr) << std::endl; + std::cout << "dlt = " + << (dlt) << std::endl; + std::cout << "cnt*avg² = " + << (mln::math::sqr(sum/cnt)*cnt) << std::endl; + std::cout << "2*mxt = " + << (2*mxt) << std::endl; + std::cout << "sqr - cnt*avg² = " + << (sqr/cnt - mln::math::sqr(sum/cnt)) << std::endl; + std::cout << "(sqr -2*mxt + cnt*avg²) = " + << ((sqr - 2*mxt + mln::math::sqr(sum/cnt))/cnt) << std::endl; + std::cout << std::endl; + return (0 == cnt)? 0 : sqr/cnt - mln::math::sqr(sum/cnt); +} + +template <typename I> +mln_value(I) var_histo(const mln::Image<I>& histo_) +{ + const I& histo = exact(histo_); + + mln_precondition(histo.is_valid()); + + mln_value(I) pos = mln::literal::zero; + mln_value(I) sum = mln::literal::zero; + mln_value(I) sqr = mln::literal::zero; + mln_value(I) cnt = mln::literal::zero; + mln_piter(I) p(histo.domain()); + + for_all(p) + { + pos = p.ind(); + cnt += (histo(p)); + sum += (histo(p)*pos); + sqr += (histo(p)*mln::math::sqr(pos)); + } + + return (0 == cnt)? 0 : sqr/cnt - mln::math::sqr(sum/cnt); +} + +//============================================================================// +// CLASSIFIEUR +//============================================================================// + + +// Linear discriminant analysis in 1d +// With same variance, threshold = (m1+m2)/2 +// With different variance, (m1*sqrt(v1)+m2*sqrt(v2))/(sqrt(v1)+sqrt(v2)) +float threshold_histo(float avg1, float var1, float avg2, float var2) +{ + float sigma1 = mln::math::sqrt(var1); + float sigma2 = mln::math::sqrt(var2); + float threshold = (avg1*sigma1+avg2*sigma2)/(sigma1+sigma2); + + return threshold; +} + +float threshold3_histo(float avg1, float var1, float avg2, float var2) +{ + float threshold = (avg1*var1+avg2*var2)/(var1+var2); + + return threshold; +} + + +// if gaussian without the same variance +float threshold2_histo(float avg1, float var1, float avg2, float var2) +{ + float a = var2 - var1; + float b = -2 * (avg1 * var2 - avg2 * var1); + float c = var2 * mln::math::sqr(avg1) - var1 * mln::math::sqr(avg2); + float d = mln::math::sqr(b) - 4 * a * c; + + if (d < 0) + std::cout << "delta negatif" << std::endl; + + float x1 = (-b+mln::math::sqrt(d))/(2*a); + float x2 = (-b-mln::math::sqrt(d))/(2*a); + + std::cout << "a = " << a << std::endl; + std::cout << "b = " << b << std::endl; + std::cout << "c = " << c << std::endl; + std::cout << "d = " << d << std::endl; + std::cout << "x1 = " << x1 << std::endl; + std::cout << "x2 = " << x2 << std::endl; + + return x2; +} + +template <typename I> +mln_value(I) sqr_histo(const mln::Image<I>& histo_) +{ + const I& histo = exact(histo_); + + mln_precondition(histo.is_valid()); + + mln_value(I) sum = mln::literal::zero; + mln_piter(I) p(histo.domain()); + + for_all(p) + sum += (mln::math::sqr(p.ind())*histo(p)); + + return sum; +} + + +short min_error(const mln::image1d<float> histo_grp1, + const mln::image1d<float> histo_grp2, + float *_c00, float *_c10, float *_c01, float *_c11) +{ + float c00[256]; + float c10[256]; + float c01[256]; + float c11[256]; + float err[256]; + + for (short p = 0; p < 256; p++) + { + c00[p] = cnt_histo(histo_grp1|mln::box1d(mln::point1d(0), + mln::point1d(p))); + + c10[p] = cnt_histo(histo_grp1|mln::box1d(mln::point1d(p+1), + mln::point1d(255))); + + c01[p] = cnt_histo(histo_grp2|mln::box1d(mln::point1d(0), + mln::point1d(p))); + + c11[p] = cnt_histo(histo_grp2|mln::box1d(mln::point1d(p+1), + mln::point1d(255))); + } + + short threshold = 0; + float error = c01[0] + c01[0] + c00[0] + c11[0]; + + for(short p = 0; p < 256; p++) + { + err[p] = c10[p] + c01[p]; + +// std::cout << " p = " << p +// << ";c00 = " << c00[p] +// << ";c10 = " << c10[p] +// << ";c01 = " << c01[p] +// << ";c11 = " << c11[p] +// << std::endl; +// std::cout << "err[" << p << "] = " << err[p] << std::endl; + + if (error > err[p]) + { + error = err[p]; + threshold = p; + } + } + + *_c00 = c00[threshold]; + *_c10 = c10[threshold]; + *_c01 = c01[threshold]; + *_c11 = c11[threshold]; + + return threshold; +} + +// return the threshold +short fisher_analysis(const mln::image1d<float> histo) +{ + typedef mln::value::int_u8 t_int_u8; + + // FIXE ME SIZE const short a = mln_min(t_int_u8); + // float cnt1[a]; + + float cnt1[256]; + float sum1[256]; + float sqr1[256]; + float avg1[256]; + float var1[256]; + + float cnt2[256]; + float sum2[256]; + float sqr2[256]; + float avg2[256]; + float var2[256]; + + float cnt0[256]; // count of points + float sum0[256]; // sum of population + float sqr0[256]; // sqr of population + float avg0[256]; // average of the population + float v_in[256]; // variance with-in class + float v_bw[256]; // variance between class + float var0[256]; // variance of the population + short threshold; + float pos; + float min_var; + + // Assign the first elements + cnt1[0] = 0; + sum1[0] = 0; + sqr1[0] = 0; + avg1[0] = 0; + var1[0] = 0; + + // Compute the stats of the wall histogram + cnt2[0] = 0; + sum2[0] = 0; + sqr2[0] = 0; + + for(short p = 0; p < 256; p++) + { + pos = p; + cnt2[0] += mln::opt::at(histo,p); + sum2[0] += (pos * mln::opt::at(histo,p)); + sqr2[0] += (mln::math::sqr(pos) * mln::opt::at(histo,p)); + } + + avg2[0] = (0 == cnt2[0])? 0 : sum2[0] / cnt2[0]; + var2[0] = (0 == cnt2[0])? 0 : sqr2[0] / cnt2[0] - mln::math::sqr(avg2[0]); + + // watch the array limits + for (short p = 1; p < 256; p++) + { + pos = p; + + // Assign the statistics to the primary class + cnt1[p] = cnt1[p-1] + mln::opt::at(histo, p); + sum1[p] = sum1[p-1] + pos * mln::opt::at(histo, p); + sqr1[p] = sqr1[p-1] + mln::math::sqr(pos) * mln::opt::at(histo, p); + avg1[p] = (0 == cnt1[p])? 0 : (sum1[p] / cnt1[p]); + var1[p] = (0 == cnt1[p])? 0 : ((sqr1[p] / cnt1[p])-mln::math::sqr(avg1[p])); + + // Assign the statistics to the second class + cnt2[p] = cnt2[p-1] - mln::opt::at(histo, p);; + sum2[p] = sum2[p-1] - p * mln::opt::at(histo, p);; + sqr2[p] = sqr2[p-1] - mln::math::sqr(p) * mln::opt::at(histo, p);; + avg2[p] = (0 == cnt2[p])? 0 : (sum2[p] / cnt2[p]); + var2[p] = (0 == cnt2[p])? 0 : ((sqr2[p] / cnt2[p])-mln::math::sqr(avg2[p])); + + // Lets compute the invariants + cnt0[p] = cnt1[p] + cnt2[p]; + sum0[p] = sum1[p] + sum2[p]; + sqr0[p] = sqr1[p] + sqr2[p]; + avg0[p] = (cnt1[p] * avg1[p] + cnt2[p] * avg2[p])/cnt0[p]; + v_in[p] = (cnt1[p] * var1[p] + cnt2[p] * var2[p])/cnt0[p]; + v_bw[p] = (cnt1[p] * mln::math::sqr(avg1[p]-avg0[p]) + + cnt2[p] * mln::math::sqr(avg2[p]-avg0[p]))/cnt0[p]; + var0[p] = v_in[p] + v_bw[p]; + } + + // Find the threshold that minimizes the intra-class variance + min_var = cnt2[0]*var2[0]; + threshold = 0; + + for(short p = 0; p < 256; p++) + { + // Compute the intra-class variance + v_in[p] = cnt1[p]*var1[p] + cnt2[p]*var2[p]; +// std::cout << "var intra[" << p << "]= " << v_in[p] << std::endl; + + if (min_var > v_in[p]) + { + min_var = v_in[p]; + threshold = p; + } + } + + return threshold; +} + + + + +//============================================================================// +// MAIN +//============================================================================// + + + + + +#define LVL0_DESCR 0 +#define HUE0_DESCR 1 +#define HUE1_DESCR 2 +#define SAT0_DESCR 3 +#define SAT1_DESCR 4 +#define VAL0_DESCR 5 +#define VAL1_DESCR 6 +#define GMP0_DESCR 7 +#define GMP1_DESCR 8 +#define GMP2_DESCR 9 +#define MGK0_DESCR 9 +#define MGK1_DESCR 10 +#define MGK2_DESCR 11 + +#define MGK_DESCR(version) (MGK0_DESCR + version) +#define GMP_DESCR(version) (GMP0_DESCR + version) + +#define NB_DESCR 12 +#define NB_DATABASE 2 +#define NB_IMAGE 110 +#define NB_VERSION 3 + + +void init_descriptors(std::string file_name[], + float result[][NB_DESCR], + int size[]) +{ + for (int i = 0; i < NB_IMAGE; i++) + { + file_name[i] = std::string("PGM"); + + for (int d = 0; d < NB_DESCR; d++) + result[i][d] = (i*d) % 256; + } + + size[0] = 62; + size[1] = 48; +} + + +void dump_descriptors(const std::string file_name[], + const float result[][NB_DESCR], + const int size[]) +{ + std::cout << "#!/usr/bin/gnuplot" << std::endl; + std::cout << "set terminal x11 persist 1" << std::endl; + std::cout << "plot '-' using 2 with point title 'ICDAR',\\" << std::endl; + std::cout << " '-' using 2 with point title 'AFP'" << std::endl; + + int num = 0; + + for (int db = 0; db < NB_DATABASE; db++) + { + for (int i = 0; i < size[db]; i++) + { + std::cout << result[num][LVL0_DESCR] << " "; + std::cout << result[num][HUE0_DESCR] << " "; + std::cout << result[num][HUE1_DESCR] << " "; + std::cout << result[num][SAT0_DESCR] << " "; + std::cout << result[num][SAT1_DESCR] << " "; + std::cout << result[num][VAL0_DESCR] << " "; + std::cout << result[num][VAL1_DESCR] << " "; + std::cout << result[num][GMP0_DESCR] << " "; + std::cout << result[num][GMP1_DESCR] << " "; + std::cout << result[num][GMP2_DESCR] << " "; + std::cout << result[num][MGK0_DESCR] << " "; + std::cout << result[num][MGK1_DESCR] << " "; + std::cout << result[num][MGK2_DESCR] << " "; + std::cout << " # " << file_name[num] << std::endl; + num++; + } + + std::cout << "e" << std::endl; + } +} + +void compute_histo(const float result[][NB_DESCR], + const int size[], + mln::image1d<float> histo[][NB_DATABASE]) +{ + for (int i = 0; i < NB_DESCR; i++) + for (int db = 0; db < NB_DATABASE; db++) + { + histo[i][db].init_(mln::box1d(mln::point1d(0),mln::point1d(255))); + + mln::data::fill(histo[i][db], mln::literal::zero); + } + + short v; + int num = 0; + + for (int db = 0; db < NB_DATABASE; db++) + { + for (int i = 0; i < size[db]; i++) + { + v = (short)mln::math::floor(result[num][VAR0_DESCR]+0.4999); + mln::opt::at(histo[VAR0_DESCR][db],v)++; + + v = (short)mln::math::floor(result[num][LVL0_DESCR]+0.4999); + mln::opt::at(histo[LVL0_DESCR][db],v)++; + + v = (short)mln::math::floor(result[num][HUE0_DESCR]+0.4999); + mln::opt::at(histo[HUE0_DESCR][db],v)++; + + v = (short)mln::math::floor(result[num][HUE1_DESCR]+0.4999); + mln::opt::at(histo[HUE1_DESCR][db],v)++; + + v = (short)mln::math::floor(result[num][SAT0_DESCR]+0.4999); + mln::opt::at(histo[SAT0_DESCR][db],v)++; + + v = (short)mln::math::floor(result[num][SAT1_DESCR]+0.4999); + mln::opt::at(histo[SAT1_DESCR][db],v)++; + + v = (short)mln::math::floor(result[num][VAL0_DESCR]+0.4999); + mln::opt::at(histo[VAL0_DESCR][db],v)++; + + v = (short)mln::math::floor(result[num][GMP0_DESCR]+0.4999); + mln::opt::at(histo[GMP0_DESCR][db],v)++; + + v = (short)mln::math::floor(result[num][GMP1_DESCR]+0.4999); + mln::opt::at(histo[GMP1_DESCR][db],v)++; + + v = (short)mln::math::floor(result[num][GMP2_DESCR]+0.4999); + mln::opt::at(histo[GMP2_DESCR][db],v)++; + + v = (short)mln::math::floor(result[num][MGK0_DESCR]+0.4999); + mln::opt::at(histo[MGK0_DESCR][db],v)++; + + v = (short)mln::math::floor(result[num][MGK1_DESCR]+0.4999); + mln::opt::at(histo[MGK1_DESCR][db],v)++; + + v = (short)mln::math::floor(result[num][MGK2_DESCR]+0.4999); + mln::opt::at(histo[MGK2_DESCR][db],v)++; + + num++; + } + } +} + +void compute_thresholds(const mln::image1d<float> histo[][NB_DATABASE], + short threshold[], + float c00[], + float c10[], + float c01[], + float c11[]) +{ + for (int i = 0; i < NB_DESCR; i++) + { + float avg0 = avg_histo(histo[i][0]); + float avg1 = avg_histo(histo[i][1]); + + if (avg0 < avg1) + { + threshold[i] = min_error(histo[i][0], histo[i][1], + &c00[i], &c10[i], &c01[i], &c11[i]); + } + else + { + threshold[i] = min_error(histo[i][1], histo[i][0], + &c00[i], &c10[i], &c01[i], &c11[i]); + } + + std::cerr << " i = " << i + << "; c00 = " << c00[i] + << "; c10 = " << c10[i] + << "; c01 = " << c01[i] + << "; c11 = " << c11[i] + << "; threshold " << threshold[i] + << std::endl; + + } +} + + +void compute_descriptors(std::string file_name[], + float result[][NB_DESCR], + int size[]) +{ + typedef boost::filesystem::path t_path; + typedef boost::filesystem::directory_iterator t_iter_path; + typedef mln::image1d<unsigned> t_histo; + typedef mln::value::rgb8 t_rgb8; + typedef mln::value::int_u8 t_int_u8; + typedef mln::image2d<t_int_u8> t_map; + typedef mln::image2d<t_rgb8> t_input; + typedef mln::fun::v2v::rgb_to_hue_map<8> t_rgb_2_hue; + typedef mln::fun::v2v::rgb_to_saturation_map<8> t_rgb_2_sat; + typedef mln::fun::v2v::rgb_to_value_map<8> t_rgb_2_val; + typedef mln::fun::v2v::component<t_rgb8,0> t_rgb_2_red; + typedef mln::fun::v2v::component<t_rgb8,1> t_rgb_2_green; + typedef mln::fun::v2v::component<t_rgb8,2> t_rgb_2_blue; + typedef mln::accu::meta::stat::histo1d t_accu_histo; + + + t_path img_path[2] = { ICDAR_20P_INPUT_IMG_PATH, AFP_PPM_IMG_PATH}; + t_path mgk_path[3][2] = {{ICDAR_20P_MGK30_IMG_PATH, AFP_MGK30_IMG_PATH}, + {ICDAR_20P_MGK20_IMG_PATH, AFP_MGK20_IMG_PATH}, + {ICDAR_20P_MGK10_IMG_PATH, AFP_MGK10_IMG_PATH}}; + t_path gmp_path[3][2] = {{ICDAR_20P_GMP30_IMG_PATH, AFP_GMP30_IMG_PATH}, + {ICDAR_20P_GMP20_IMG_PATH, AFP_GMP20_IMG_PATH}, + {ICDAR_20P_GMP10_IMG_PATH, AFP_GMP10_IMG_PATH}}; + + int num = 0; + int cnt = 0; + + for (int db = 0; db < NB_DATABASE; db++) + { + if (boost::filesystem::exists(img_path[db]) && + boost::filesystem::is_directory(img_path[db])) + { + boost::filesystem::system_complete(img_path[db]); + + const t_iter_path end_iter; + + cnt = 0; + + for (t_iter_path dir_iter(img_path[db]); end_iter != dir_iter; ++dir_iter) + { + t_path img_file = dir_iter->path().leaf(); + t_path dir_file = dir_iter->path(); + t_input img_input; + + mln::io::ppm::load(img_input, dir_file.string().c_str()); + + t_map h_img_map = mln::data::transform(img_input, t_rgb_2_hue()); + t_map s_img_map = mln::data::transform(img_input, t_rgb_2_sat()); + t_map v_img_map = mln::data::transform(img_input, t_rgb_2_val()); + t_map r_img_map = mln::data::transform(img_input, t_rgb_2_red()); + t_map g_img_map = mln::data::transform(img_input, t_rgb_2_green()); + t_map b_img_map = mln::data::transform(img_input, t_rgb_2_blue()); + t_histo h_img_hst = mln::data::compute(t_accu_histo(), h_img_map); + t_histo s_img_hst = mln::data::compute(t_accu_histo(), s_img_map); + t_histo v_img_hst = mln::data::compute(t_accu_histo(), v_img_map); + t_histo r_img_hst = mln::data::compute(t_accu_histo(), r_img_map); + t_histo g_img_hst = mln::data::compute(t_accu_histo(), g_img_map); + t_histo b_img_hst = mln::data::compute(t_accu_histo(), b_img_map); + + std::cerr << dir_iter->path() << std::endl; + + file_name[num] = img_file.string(); + + // descriptors + result[num][LVL0_DESCR] = lvl0_descriptor(v_img_hst); + result[num][HUE0_DESCR] = hue0_descriptor(h_img_hst); + result[num][HUE1_DESCR] = hue1_descriptor(h_img_hst,20); + result[num][SAT0_DESCR] = sat0_descriptor(s_img_hst); + result[num][SAT1_DESCR] = sat1_descriptor(s_img_hst,50); + result[num][VAL0_DESCR] = val0_descriptor(v_img_hst); + //result[num][VAL1_DESCR] = var0_descriptor(v_img_hst, 15); + result[num][VAL1_DESCR] = 0; + + // for gimp and magick + for (int v = 0; v < NB_VERSION; v++) + { + if (boost::filesystem::exists(mgk_path[v][db]) && + boost::filesystem::exists(gmp_path[v][db]) && + boost::filesystem::is_directory(mgk_path[v][db]) && + boost::filesystem::is_directory(gmp_path[v][db])) + { + t_path mgk_file = mgk_path[v][db] / img_file; + t_path gmp_file = gmp_path[v][db] / img_file; + t_input gmp_input; + + mln::io::ppm::load(gmp_input, gmp_file.string().c_str()); + + t_map r_gmp_map = mln::data::transform(gmp_input,t_rgb_2_red()); + t_map g_gmp_map = mln::data::transform(gmp_input,t_rgb_2_green()); + t_map b_gmp_map = mln::data::transform(gmp_input,t_rgb_2_blue()); + + result[num][GMP_DESCR(v)]= err_descriptor(r_img_map, + g_img_map, + b_img_map, + r_gmp_map, + g_gmp_map, + b_gmp_map); + + t_input mgk_input; + + mln::io::ppm::load(mgk_input, mgk_file.string().c_str()); + + t_map r_mgk_map = mln::data::transform(mgk_input,t_rgb_2_red()); + t_map g_mgk_map = mln::data::transform(mgk_input,t_rgb_2_green()); + t_map b_mgk_map = mln::data::transform(mgk_input,t_rgb_2_blue()); + + result[num][MGK_DESCR(v)]= err_descriptor(r_img_map, + g_img_map, + b_img_map, + r_mgk_map, + g_mgk_map, + b_mgk_map); + } + } + + num++; + cnt++; + } + } + + size[db] = cnt; + } +} + + +int main2() +{ + typedef mln::image1d<unsigned> t_histo; + typedef mln::value::rgb8 t_rgb8; + typedef mln::value::int_u8 t_int_u8; + typedef mln::image2d<t_int_u8> t_map; + typedef mln::image2d<t_rgb8> t_input; + typedef mln::fun::v2v::rgb_to_hue_map<8> t_rgb_2_hue; + typedef mln::fun::v2v::rgb_to_saturation_map<8> t_rgb_2_sat; + typedef mln::fun::v2v::rgb_to_value_map<8> t_rgb_2_val; + typedef mln::fun::v2v::component<t_rgb8,0> t_rgb_2_red; + typedef mln::fun::v2v::component<t_rgb8,1> t_rgb_2_green; + typedef mln::fun::v2v::component<t_rgb8,2> t_rgb_2_blue; + typedef mln::accu::meta::stat::histo1d t_accu_histo; + + t_input img_input; + + mln::io::ppm::load(img_input, ICDAR_20P_INPUT_IMG_PATH"/mp00032c_20p.ppm"); + //mln::io::ppm::load(img_input, AFP_PPM_IMG_PATH"/000_Del218430.ppm"); + + + + t_map h_img_map = mln::data::transform(img_input, t_rgb_2_hue()); + t_map s_img_map = mln::data::transform(img_input, t_rgb_2_sat()); + t_map v_img_map = mln::data::transform(img_input, t_rgb_2_val()); + t_map r_img_map = mln::data::transform(img_input, t_rgb_2_red()); + t_map g_img_map = mln::data::transform(img_input, t_rgb_2_green()); + t_map b_img_map = mln::data::transform(img_input, t_rgb_2_blue()); + t_histo h_img_hst = mln::data::compute(t_accu_histo(), h_img_map); + t_histo s_img_hst = mln::data::compute(t_accu_histo(), s_img_map); + t_histo v_img_hst = mln::data::compute(t_accu_histo(), v_img_map); + t_histo r_img_hst = mln::data::compute(t_accu_histo(), r_img_map); + t_histo g_img_hst = mln::data::compute(t_accu_histo(), g_img_map); + t_histo b_img_hst = mln::data::compute(t_accu_histo(), b_img_map); + + + std::cout << "sat2 : " << sat0_descriptor(s_img_hst) << std::endl; + + return 0; +} + +int main() +{ + std::string file_name[NB_IMAGE]; + float result[NB_IMAGE][NB_DESCR]; + int size[NB_DATABASE]; + mln::image1d<float> histo[NB_DESCR][NB_DATABASE]; + short threshold[NB_DESCR]; + float c00[NB_DESCR]; + float c10[NB_DESCR]; + float c01[NB_DESCR]; + float c11[NB_DESCR]; + + std::cerr << "DESCRIPTORS" << std::endl; + compute_descriptors(file_name,result,size); +// std::cout << "DUMPING" << std::endl; +// init_descriptors(file_name,result,size); + dump_descriptors(file_name,result,size); + std::cerr << "HISTO" << std::endl; + compute_histo(result,size,histo); + std::cerr << "THRESHOLD" << std::endl; + compute_thresholds(histo,threshold,c00,c10,c01,c11); + + mln::io::plot::save_image_sh(histo[LVL0_DESCR][0], "lvl0_histo1.sh"); + mln::io::plot::save_image_sh(histo[HUE0_DESCR][0], "hue0_histo1.sh"); + mln::io::plot::save_image_sh(histo[HUE1_DESCR][0], "hue1_histo1.sh"); + mln::io::plot::save_image_sh(histo[SAT0_DESCR][0], "sat0_histo1.sh"); + mln::io::plot::save_image_sh(histo[SAT1_DESCR][0], "sat1_histo1.sh"); + mln::io::plot::save_image_sh(histo[VAL0_DESCR][0], "val0_histo1.sh"); + mln::io::plot::save_image_sh(histo[VAL1_DESCR][0], "val1_histo1.sh"); + mln::io::plot::save_image_sh(histo[GMP0_DESCR][0], "gmp0_histo1.sh"); + mln::io::plot::save_image_sh(histo[GMP1_DESCR][0], "gmp1_histo1.sh"); + mln::io::plot::save_image_sh(histo[GMP2_DESCR][0], "gmp2_histo1.sh"); + mln::io::plot::save_image_sh(histo[MGK0_DESCR][0], "mgk0_histo1.sh"); + mln::io::plot::save_image_sh(histo[MGK1_DESCR][0], "mgk1_histo1.sh"); + mln::io::plot::save_image_sh(histo[MGK2_DESCR][0], "mgk2_histo1.sh"); + + mln::io::plot::save_image_sh(histo[LVL0_DESCR][1], "lvl0_histo2.sh"); + mln::io::plot::save_image_sh(histo[HUE0_DESCR][1], "hue0_histo2.sh"); + mln::io::plot::save_image_sh(histo[HUE1_DESCR][1], "hue1_histo2.sh"); + mln::io::plot::save_image_sh(histo[SAT0_DESCR][1], "sat0_histo2.sh"); + mln::io::plot::save_image_sh(histo[SAT1_DESCR][1], "sat1_histo2.sh"); + mln::io::plot::save_image_sh(histo[VAL0_DESCR][1], "val0_histo2.sh"); + mln::io::plot::save_image_sh(histo[VAL1_DESCR][1], "val1_histo2.sh"); + mln::io::plot::save_image_sh(histo[GMP0_DESCR][1], "gmp0_histo2.sh"); + mln::io::plot::save_image_sh(histo[GMP1_DESCR][1], "gmp1_histo2.sh"); + mln::io::plot::save_image_sh(histo[GMP2_DESCR][1], "gmp2_histo2.sh"); + mln::io::plot::save_image_sh(histo[MGK0_DESCR][1], "mgk0_histo2.sh"); + mln::io::plot::save_image_sh(histo[MGK1_DESCR][1], "mgk1_histo2.sh"); + mln::io::plot::save_image_sh(histo[MGK2_DESCR][1], "mgk2_histo2.sh"); + + return 0; +} + -- 1.5.6.5
14 years, 1 month
1
0
0
0
last-svn-commit-31-gba99cc2 Test on image database the achromatism descriptor.
by Yann Jacquelet
* green/exp/annotating/achromatism/Makefile.am: New Makefile. * green/exp/annotating/achromatism/achromatism.am: New source. * green/exp/annotating/achromatism/text-color.txt: New image class. * green/exp/annotating/achromatism/text-img.txt: New image class. * green/exp/annotating/achromatism/text-only.txt: New image class. --- milena/sandbox/ChangeLog | 18 +++ .../{nb_color => achromastism}/Makefile.am | 4 +- .../exp/annotating/achromastism/achromastism.cc | 113 ++++++++++++++++++++ .../exp/annotating/achromastism/text-color.txt | 15 +++ .../green/exp/annotating/achromastism/text-img.txt | 40 +++++++ .../exp/annotating/achromastism/text-only.txt | 8 ++ 6 files changed, 197 insertions(+), 1 deletions(-) copy milena/sandbox/green/exp/annotating/{nb_color => achromastism}/Makefile.am (96%) create mode 100644 milena/sandbox/green/exp/annotating/achromastism/achromastism.cc create mode 100644 milena/sandbox/green/exp/annotating/achromastism/text-color.txt create mode 100644 milena/sandbox/green/exp/annotating/achromastism/text-img.txt create mode 100644 milena/sandbox/green/exp/annotating/achromastism/text-only.txt diff --git a/milena/sandbox/ChangeLog b/milena/sandbox/ChangeLog index 27c37db..d86642a 100644 --- a/milena/sandbox/ChangeLog +++ b/milena/sandbox/ChangeLog @@ -1,3 +1,21 @@ +2010-06-21 Yann Jacquelet <jacquelet(a)lrde.epita.fr> + + Test on image database the achromatism descriptor. + + * green/exp/annotating/achromatism/Makefile.am: New Makefile. + * green/exp/annotating/achromatism/achromatism.am: New source. + * green/exp/annotating/achromatism/text-color.txt: New image class. + * green/exp/annotating/achromatism/text-img.txt: New image class. + * green/exp/annotating/achromatism/text-only.txt: New image class. + +2010-06-21 Yann Jacquelet <jacquelet(a)lrde.epita.fr> + + Turn around Millet 2008 hsv descriptors. + + * green/demo/annotating/hsv: New directory. + * green/demo/annotating/hsv/Makefile.am: New Makefile. + + 2010-02-10 Yann Jacquelet <jacquelet(a)lrde.epita.fr> Save Theo's exhaustive demonstration results. diff --git a/milena/sandbox/green/exp/annotating/nb_color/Makefile.am b/milena/sandbox/green/exp/annotating/achromastism/Makefile.am similarity index 96% copy from milena/sandbox/green/exp/annotating/nb_color/Makefile.am copy to milena/sandbox/green/exp/annotating/achromastism/Makefile.am index 8e204c6..d33b94d 100644 --- a/milena/sandbox/green/exp/annotating/nb_color/Makefile.am +++ b/milena/sandbox/green/exp/annotating/achromastism/Makefile.am @@ -7,7 +7,9 @@ ######### LOADLIBES= -lboost_filesystem -INCLUDES= -I$(HOME)/svn/oln/trunk/milena/sandbox/green +INCLUDES1= -I$(HOME)/git/olena/milena/sandbox/green +INCLUDES2= -I$(HOME)/git/olena/milena +INCLUDES= $(INCLUDES1) $(INCLUDES2) #CXXFLAGS= -ggdb -O0 -Wall -W -pedantic -ansi -pipe $(INCLUDES) #CXXFLAGS= -DNDEBUG -O1 -Wall -W -pedantic -ansi -pipe $(INCLUDES) CXXFLAGS= -DNDEBUG -O3 -Wall -W -pedantic -ansi -pipe $(INCLUDES) diff --git a/milena/sandbox/green/exp/annotating/achromastism/achromastism.cc b/milena/sandbox/green/exp/annotating/achromastism/achromastism.cc new file mode 100644 index 0000000..fdb8e6d --- /dev/null +++ b/milena/sandbox/green/exp/annotating/achromastism/achromastism.cc @@ -0,0 +1,113 @@ +// ACHROMATISM TEST CF MILLET 2008 + +#include <iostream> +#include <sstream> +#include <boost/filesystem.hpp> + +#include <mln/img_path.hh> + +#include <mln/accu/stat/histo1d.hh> + +#include <mln/core/image/image1d.hh> +#include <mln/core/image/image2d.hh> +#include <mln/core/image/dmorph/image_if.hh> + +#include <mln/data/compute.hh> +#include <mln/data/stretch.hh> +#include <mln/data/transform.hh> + +#include <mln/math/max.hh> +#include <mln/math/min.hh> + +#include <mln/geom/nsites.hh> + +#include <mln/fun/v2v/rgb_to_achromatism_map.hh> + +#include <mln/io/ppm/load.hh> +#include <mln/io/plot/save_image_sh.hh> + +#include <mln/value/rgb8.hh> + +template <typename I> +unsigned count_histo(const mln::Image<I>& img_) +{ + const I& img = exact(img_); + + mln_precondition(img.is_valid()); + + unsigned result = 0; + + mln_piter(I) p(img.domain()); + + for_all(p) + result += img(p); + + return result; +} + +float achromatism_test(const std::string input, + const std::string output, + const unsigned threshold) + +{ + typedef mln::fun::v2v::rgb_to_achromatism_map<8> t_rgb_to_achromatism_map; + + mln::image2d<mln::value::rgb8> input_rgb8; + mln::image2d<mln::value::int_u8> map; + mln::image1d<unsigned> histo; + unsigned cnt1; + unsigned cnt2; + float prop; + + mln::io::ppm::load(input_rgb8, input.c_str()); + + map = mln::data::transform(input_rgb8, t_rgb_to_achromatism_map()); + histo = mln::data::compute(mln::accu::meta::stat::histo1d(), map); + cnt1 = count_histo(histo | mln::box1d(mln::point1d(0), + mln::point1d(threshold))); + cnt2 = mln::geom::nsites(input_rgb8); + prop = ((100.0 * cnt1) / cnt2); + + mln::io::plot::save_image_sh(histo, output.c_str()); + + return prop; +} + + +int main() +{ + typedef boost::filesystem::path t_path; + typedef boost::filesystem::directory_iterator t_iter_path; + + t_path full_path[] = {t_path(ICDAR_20P_PPM_IMG_PATH)}; + + for (int i = 0; i < 1; ++i) + { + std::cout << "entering " << full_path[i] << std::endl; + + if (boost::filesystem::exists(full_path[i]) && + boost::filesystem::is_directory(full_path[i])) + { + boost::filesystem::system_complete(full_path[i]); + const t_iter_path end_iter; + float prop = 0.0; + + for (t_iter_path dir_iter(full_path[i]); end_iter != dir_iter; ++dir_iter) + { + // concatenation de chaine + t_path directory(ANNOTATING_ACHROMATISM_RET_PATH); + t_path leaf = dir_iter->path().leaf(); + t_path output = change_extension(directory / leaf, ".sh"); + + prop = achromatism_test(dir_iter->path().string(), + output.string(), + 11); + + std::cout << output << " : " << prop << std::endl; + std::cerr << output << " : " << prop << std::endl; + } + } + } + + return 0; +} diff --git a/milena/sandbox/green/exp/annotating/achromastism/text-color.txt b/milena/sandbox/green/exp/annotating/achromastism/text-color.txt new file mode 100644 index 0000000..4dfcbd3 --- /dev/null +++ b/milena/sandbox/green/exp/annotating/achromastism/text-color.txt @@ -0,0 +1,15 @@ +mp00262c_20p.ppm +mp00263c_20p.ppm +mp00319c_20p.ppm +mp00440c_20p.ppm +mp00608c_20p.ppm +mp00630c_20p.ppm +mp00631c_20p.ppm +ta00028c_20p.ppm +ta00037c_20p.ppm +ta00043c_20p.ppm +ta00046c_20p.ppm +ta00073c_20p.ppm +ta00081c_20p.ppm +ta00089c_20p.ppm +ta00090c_20p.ppm diff --git a/milena/sandbox/green/exp/annotating/achromastism/text-img.txt b/milena/sandbox/green/exp/annotating/achromastism/text-img.txt new file mode 100644 index 0000000..4ecb7ca --- /dev/null +++ b/milena/sandbox/green/exp/annotating/achromastism/text-img.txt @@ -0,0 +1,40 @@ +mp00032c_20p.ppm +mp00042c_20p.ppm +mp00076c_20p.ppm +mp00082c_20p.ppm +mp00142c_20p.ppm +mp00215c_20p.ppm +mp00228c_20p.ppm +mp00234c_20p.ppm +mp00248c_20p.ppm +mp00252c_20p.ppm +mp00253c_20p.ppm +mp00255c_20p.ppm +mp00259c_20p.ppm +mp00271c_20p.ppm +mp00290c_20p.ppm +mp00293c_20p.ppm +mp00304c_20p.ppm +mp00307c_20p.ppm +mp00311c_20p.ppm +mp00376c_20p.ppm +mp00411c_20p.ppm +mp00419c_20p.ppm +mp00447c_20p.ppm +mp00498c_20p.ppm +mp00510c_20p.ppm +mp00550c_20p.ppm +mp00573c_20p.ppm +mp00589c_20p.ppm +mp00592c_20p.ppm +mp00597c_20p.ppm +mp00599c_20p.ppm +mp00600c_20p.ppm +ta00031c_20p.ppm +ta00034c_20p.ppm +ta00063c_20p.ppm +ta00065c_20p.ppm +ta00072c_20p.ppm +ta00081c_20p.ppm +ta00083c_20p.ppm + diff --git a/milena/sandbox/green/exp/annotating/achromastism/text-only.txt b/milena/sandbox/green/exp/annotating/achromastism/text-only.txt new file mode 100644 index 0000000..0218a2a --- /dev/null +++ b/milena/sandbox/green/exp/annotating/achromastism/text-only.txt @@ -0,0 +1,8 @@ +mp00329c_20p.ppm +ta00036c_20p.ppm +ta00039c_20p.ppm +ta00040c_20p.ppm +ta00049c_20p.ppm +ta00055c_20p.ppm +ta00057c_20p.ppm +ta00068c_20p.ppm -- 1.5.6.5
14 years, 1 month
1
0
0
0
last-svn-commit-30-gacb2f3d Turn around Millet 2008 hsv descriptors.
by Yann Jacquelet
* green/demo/annotating/hsv: New directory. * green/demo/annotating/hsv/Makefile.am: New Makefile. --- .../regional_maxima => annotating/hsv}/Makefile.am | 6 +- milena/sandbox/green/demo/annotating/hsv/hsv.cc | 607 ++++++++++++++++++++ .../sandbox/green/ChangeLog | 0 3 files changed, 611 insertions(+), 2 deletions(-) copy milena/sandbox/green/demo/{labeling/regional_maxima => annotating/hsv}/Makefile.am (94%) create mode 100644 milena/sandbox/green/demo/annotating/hsv/hsv.cc copy milena/doc/outputs/accu-right-instanciation.txt => scribo/sandbox/green/ChangeLog (100%) diff --git a/milena/sandbox/green/demo/labeling/regional_maxima/Makefile.am b/milena/sandbox/green/demo/annotating/hsv/Makefile.am similarity index 94% copy from milena/sandbox/green/demo/labeling/regional_maxima/Makefile.am copy to milena/sandbox/green/demo/annotating/hsv/Makefile.am index 1dd1cfb..a5d4fff 100644 --- a/milena/sandbox/green/demo/labeling/regional_maxima/Makefile.am +++ b/milena/sandbox/green/demo/annotating/hsv/Makefile.am @@ -6,8 +6,10 @@ # TOOLS # ######### -INCLUDES= -I$(HOME)/svn/oln/trunk/milena/sandbox/green -CXXFLAGS= -ggdb -O0 -Wall -W -pedantic -ansi -pipe $(INCLUDES) +INCLUDES1= -I$(HOME)/git/olena/milena/sandbox/green +INCLUDES2= -I$(HOME)/git/olena/milena +INCLUDES= $(INCLUDES1) $(INCLUDES2) +CXXFLAGS= -DNDEBUG -ggdb -O0 -Wall -W -pedantic -ansi -pipe $(INCLUDES) #CXXFLAGS= -DNDEBUG -O1 -Wall -W -pedantic -ansi -pipe $(INCLUDES) #CXXFLAGS= -DNDEBUG -O3 -Wall -W -pedantic -ansi -pipe $(INCLUDES) ECHO= echo diff --git a/milena/sandbox/green/demo/annotating/hsv/hsv.cc b/milena/sandbox/green/demo/annotating/hsv/hsv.cc new file mode 100644 index 0000000..a61a5de --- /dev/null +++ b/milena/sandbox/green/demo/annotating/hsv/hsv.cc @@ -0,0 +1,607 @@ +// Test de l'opérateur de Millet TSVal (HSV) +// +// Val = max(R,G,B) +// Sat = (max(R,G,B) - min(R,G,B))/max(R,G,B) +// si R = max(R,G,B) alors Hue = 60 * [(V-B)/(max(R,G,B)-min(R,G,B))] +// si G = max(R,G,B) alors Hue = 60 * [2 + (B-R)/(max(R,G,B)-min(R,G,B))] +// si B = max(R,G,B) alors Hue = 60 * [4 + (R-G)/(max(R,G,B)-min(R,G,B))] + + +#include <iostream> +#include <fstream> + +#include <mln/accu/max_site.hh> +#include <mln/accu/math/count.hh> +#include <mln/accu/stat/histo1d.hh> + +#include <mln/binarization/threshold.hh> + +#include <mln/core/alias/point1d.hh> +#include <mln/core/alias/box1d.hh> +#include <mln/core/concept/image.hh> +#include <mln/core/image/image2d.hh> +#include <mln/core/image/dmorph/image_if.hh> + +#include <mln/data/transform.hh> +#include <mln/data/compute.hh> +#include <mln/data/stretch.hh> + +#include <mln/debug/println.hh> + +#include <mln/literal/colors.hh> +#include <mln/literal/grays.hh> + +#include <mln/fun/v2v/rgb_to_hsv.hh> +#include <mln/fun/v2v/rgb_to_achromatism_map.hh> +#include <mln/fun/v2v/achromatism.hh> +#include <mln/fun/v2v/hue_concentration.hh> +#include <mln/fun/p2b/component_equals.hh> +#include <mln/fun/p2b/achromatic.hh> +#include <mln/fun/v2v/component.hh> + +#include <mln/geom/nsites.hh> + +#include <mln/img_path.hh> + +#include <mln/io/plot/save_image_sh.hh> +#include <mln/io/ppm/load.hh> +#include <mln/io/pgm/save.hh> +#include <mln/io/pbm/save.hh> + +#include <mln/pw/cst.hh> +#include <mln/pw/value.hh> +//#include <mln/trace/quiet.hh> + +#include <mln/value/rgb8.hh> +#include <mln/value/int_u8.hh> +#include <mln/value/hsv.hh> + + +mln::value::rgb8 label_color(const mln::value::rgb8 rgb) +{ + mln::value::hsv_f hsv = mln::fun::v2v::f_rgb_to_hsv_f(rgb); + + mln::value::rgb8 result; + + // Is it a gray level ? + if (0 == hsv.sat()) + { + // which result one ? + if (82 > hsv.sat()) + result = mln::literal::black; + else if (179 > hsv.sat()) + result= mln::literal::medium_gray; + else + result = mln::literal::white; + } + // Is it a true result color ? + else if (14 > hsv.hue()) + result = mln::literal::red; + else if (29 > hsv.hue()) + { + // Is is brown or orange ? + unsigned dist_orange = mln::math::abs(hsv.sat() - 184) + + mln::math::abs(hsv.val() - 65); + + unsigned dist_brown = mln::math::abs(hsv.sat() - 255) + + mln::math::abs(hsv.val() - 125); + + if (dist_orange < dist_brown) + result = mln::literal::orange; + else + result = mln::literal::brown; + } + else if (45 > hsv.hue()) + { + // Is it green or yellow ? + if (80 > hsv.val()) + result = mln::literal::green; + else + result = mln::literal::yellow; + } + else if (113 > hsv.hue()) + result = mln::literal::green; + else if (149 > hsv.hue()) + result = mln::literal::cyan; + else if (205 > hsv.hue()) + result = mln::literal::blue; + else if (235 > hsv.hue()) + result = mln::literal::violet; + else if (242 > hsv.hue()) + result = mln::literal::pink; + else + result = mln::literal::red; + + return result; +} + +//unsigned count_histo(const mln::image1d<unsigned>& img) +template <typename I> +unsigned count_histo(const mln::Image<I>& img_) +{ + const I& img = exact(img_); + + mln_precondition(img.is_valid()); + + unsigned result = 0; + mln_piter(I) p(img.domain()); + + for_all(p) + result += img(p); + + return result; +} + +// calcul de contribution +float r(short p, unsigned histo_p, short x, unsigned histo_x) +{ + float result = mln::math::sqr(((float)histo_x / histo_p) * (x-p)); + + return result; +} + +template <typename I> +unsigned peak_histo(const mln::Image<I>& histo_) +{ + const I& histo = exact(histo_); + + mln_precondition(histo.is_valid()); + + // Find the peak of the histogram + unsigned v_max = mln::opt::at(histo, 0); + short p_max = 0; + + mln_piter(I) p(histo.domain()); + + for_all(p) + { + if (v_max < histo(p)) + { + v_max = histo(p); + p_max = p.ind(); + } + } + + return p_max; +} + + +// unsigned stddev_color(mln::image2d<mln::value::int_u8> input_int_u8, +// const char *name_histo, +// const char *name_image) +// { +// typedef mln::point1d t_point1d; +// typedef mln::value::rgb8 t_rgb8; +// typedef mln::value::int_u8 t_int_u8; +// typedef mln::image2d<t_rgb8> t_image2d_rgb8; +// typedef mln::image2d<t_int_u8> t_image2d_int_u8; +// typedef mln::image1d<unsigned> t_histo1d; +// typedef mln::fun::v2v::rgb8_to_int_u8 t_rgb8_to_int_u8; +// typedef mln::accu::meta::stat::histo1d t_histo1d_fun; +// typedef mln::accu::max_site<t_histo1d> t_max_site_fun; + +// t_histo1d histo; + +// std::cout << "histo : " << name_histo << std::endl; +// std::cout << "image : " << name_image << std::endl; + +// histo = mln::data::compute(t_histo1d_fun(), input_int_u8); + +// mln::io::pgm::save(input_int_u8, name_image); +// mln::io::plot::save_image_sh(histo, name_histo); +// mln::debug::println(histo); + +// // Find the peak of the histogram +// unsigned v_max = mln::opt::at(histo, 0); +// short p_max = 0; + +// mln_piter_(t_histo1d) p(histo.domain()); + +// for_all(p) +// { +// if (v_max < histo(p)) +// { +// v_max = histo(p); +// p_max = p.ind(); +// } +// } + +// // Compute the specific stddev + +// float stddev_low = 0.0; +// float stddev_up = 0.0; +// float stddev = 0.0; + +// if (250 > p_max) +// for (short i = p_max+1; i < p_max+6; ++i) +// stddev_up += r(p_max, mln::opt::at(histo,p_max), +// i, mln::opt::at(histo,i)); + +// if (5 < p_max) +// for (short i = p_max-1; i > p_max-6; --i) +// stddev_low += r(p_max, mln::opt::at(histo,p_max), +// i, mln::opt::at(histo,i)); + +// stddev = (250 < p_max)? stddev_low : (5 > p_max)? stddev_up : +// (stddev_low + stddev_up)/2; + +// std::cout << "max_site : " << p_max << std::endl; +// std::cout << "h(max_site) : " << v_max << std::endl; +// std::cout << "stddev_up : " << stddev_up << std::endl; +// std::cout << "stddev_low : " << stddev_low << std::endl; +// std::cout << "stddev : " << stddev << std::endl; + +// return 0; +// } + + +// ------------------------------------- +// input image <name>.ppm +// map <name>-<map>.pgm +// thresholded map <name>-<map>.pbm +// histogram <name>-<map>.sh +// decision <name>-<map>.txt +// ------------------------------------- + +// Achromatism <name>-achromatism.pgm + +// call achromatism(input_rgb8, 7, 99.0) +void achromatism(mln::image2d<mln::value::rgb8> input_rgb8, + mln::value::int_u8 threshold, + float percentage) +{ + typedef mln::fun::v2v::rgb_to_achromatism_map<8> t_rgb_to_achromatism_map; + + mln::image2d<mln::value::int_u8> map; + mln::image2d<mln::value::int_u8> view; + mln::image2d<bool> mask; + mln::image1d<unsigned> histo; + unsigned cnt1; + unsigned cnt2; + float prop; + bool result; + + + map = mln::data::transform(input_rgb8, t_rgb_to_achromatism_map()); + view = mln::data::stretch(mln::value::int_u8(), map); + mask = mln::binarization::threshold(map, threshold); + histo = mln::data::compute(mln::accu::meta::stat::histo1d(), + map | (mln::pw::value(mask) == true)); + cnt1 = count_histo(histo); + cnt2 = mln::geom::nsites(input_rgb8); + prop = (100.0 * (cnt2 - cnt1) / cnt2); + result = (prop > percentage); + + + std::ofstream txt_stream("achromatism.txt"); + txt_stream << "Achromatism" << std::endl; + + txt_stream << "Nbre pixels : " << cnt2 << std::endl; + txt_stream << "Nbre pixels achromatiques : " << (cnt2-cnt1)<< std::endl; + txt_stream << "Percentage : " << prop << std::endl; + txt_stream << "Image achromatique : " << result << std::endl; + txt_stream << std::endl; + + txt_stream.flush(); + txt_stream.close(); + + mln::io::pgm::save(view, "achromatism.pgm"); + mln::io::plot::save_image_sh(histo, "achromatism.sh"); + mln::io::pbm::save(mask, "achromatism.pbm"); +} + +// call low_saturation(input_rgb8, achromatism_mask, 100, 95.0) +void low_saturation(mln::image2d<mln::value::hsv_f> input_hsvf, + mln::image2d<bool> achromatism_mask, + mln::value::int_u8 threshold, + float percentage) +{ + typedef mln::value::hsv_f t_hsvf; + typedef mln::value::hsv_f::s_type t_sat; + typedef mln::fun::v2v::component<t_hsvf,1> t_component_s; + + mln::image2d<t_sat> map; + mln::image2d<mln::value::int_u8> view; + mln::image2d<bool> mask; + mln::image1d<unsigned> histo; + unsigned cnt1; + unsigned cnt2; + float prop; + bool result; + + + map = mln::data::transform(input_hsvf, t_component_s()); + view = mln::data::stretch(mln::value::int_u8(), map); +// where is histo ?? + prop = (100.0 * (cnt2 - cnt1) / cnt2); + result = (prop > percentage); + + std::cout << "Saturation" << std::endl; + + cnt1 = count_histo(histo_s | mln::box1d(mln::point1d(0),mln::point1d(100))); + + cnt2= mln::geom::nsites(achromatic | (mln::pw::value(achromatic)==false)); + + + + std::ofstream txt_stream("achromatism.txt"); + txt_stream << "Saturation" << std::endl; + + txt_stream << "Nbre pixels : " << cnt2 << std::endl; + txt_stream << "Nbre p faiblement saturés : " << cnt1 << std::endl; + txt_stream << "Pourcentage : " << prop << std::endl; + txt_stream << "Image faiblement saturé : " << result << std::endl; + txt_stream << std::endl; + + txt_stream.flush(); + txt_stream.close(); + + mln::io::pgm::save(view, "achromatism.pgm"); + mln::io::plot::save_image_sh(histo, "achromatism.sh"); + mln::io::pbm::save(mask, "achromatism.pbm"); +} + +/* +// COLOR + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00032c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00042c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00076c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00082c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00142c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00215c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00228c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00234c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00248c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00252c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00253c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00255c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00259c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00271c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00290c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00293c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00304c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00307c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00376c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00411c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00419c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00447c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00498c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00510c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00550c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00573c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00589c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00592c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00597c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00599c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00600c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/ta00031c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/ta00034c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/ta00043c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/ta00063c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/ta00065c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/ta00072c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/ta00081c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/ta00083c_20p.ppm"); + +// BLACK AND WHITE + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00329c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/ta00036c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/ta00037c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/ta00039c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/ta00040c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/ta00049c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/ta00055c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/ta00057c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/ta00068c_20p.ppm"); + + +// A LITTLE BIT OF COLOR + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00262c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00263c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00311c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00319c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00440c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00608c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00630c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00631c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/ta00028c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/ta00046c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/ta00073c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/ta00089c_20p.ppm"); + mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/ta00090c_20p.ppm"); +*/ + +// To DO mettre le seuil d'achromaticité en paramètre +// TO DO inverser les couleurs sur les masques +int main() +{ + typedef mln::value::rgb8 t_rgb8; + typedef mln::value::int_u8 t_int_u8; + typedef mln::value::hsv_f t_hsvf; + typedef mln::value::hsv_f::h_type t_hue; + typedef mln::value::hsv_f::s_type t_sat; + typedef mln::value::hsv_f::v_type t_val; + typedef mln::image2d<t_hue> t_image2d_hue; + typedef mln::image2d<t_sat> t_image2d_sat; + typedef mln::image2d<t_val> t_image2d_val; + typedef mln::image2d<t_hsvf> t_image2d_hsvf; + typedef mln::image2d<t_rgb8> t_image2d_rgb8; + typedef mln::image2d<float> t_image2d_float; + typedef mln::image1d<unsigned> t_histo1d; + typedef mln::image2d<t_int_u8> t_image2d_int_u8; + typedef mln::image2d<bool> t_mask; + typedef mln::fun::v2v::f_rgb_to_hsv_f_t t_rgb8_to_hsv; + typedef mln::accu::math::count<t_hsvf> t_count; + typedef mln::fun::v2v::component<t_hsvf,0> t_component_h; + typedef mln::fun::v2v::component<t_hsvf,1> t_component_s; + typedef mln::fun::v2v::component<t_hsvf,2> t_component_v; + typedef mln::fun::p2b::component_equals<t_image2d_hsvf,0> t_component_eq0; + typedef mln::fun::p2b::component_equals<t_image2d_hsvf,1> t_component_eq1; + typedef mln::fun::p2b::component_equals<t_image2d_hsvf,2> t_component_eq2; + typedef mln::fun::p2b::achromatic<t_rgb8> t_achromatic; + + t_image2d_rgb8 input_rgb8; + t_image2d_hsvf input_hsvf; + + t_mask achromatic; + t_mask low_saturation; + + t_image2d_float achromatism1; + t_image2d_int_u8 achromatism2; + t_image2d_float hue_concentration1; + t_image2d_int_u8 hue_concentration2; + + t_image2d_hue input_h; + t_image2d_hue input_h2; + t_image2d_sat input_s; + t_image2d_val input_v; + + t_image2d_int_u8 input_h8; + t_image2d_int_u8 input_s8; + t_image2d_int_u8 input_v8; + + t_histo1d histo_h; + t_histo1d histo_s; + t_histo1d histo_v; + + unsigned cnt1; + unsigned cnt2; + float percentage; + bool result; + + + + // IMAGE LOADING PHASE + std::cout << "Image loading phase ..." << std::endl; +// mln::io::ppm::load(input_rgb8, ANNOTATING_1_BILL_IMG_PATH"/bill03.ppm"); +// mln::io::ppm::load(input_rgb8, ICDAR_20P_PPM_IMG_PATH"/mp00082c_20p.ppm"); + + + achromatism(input_rgb8,7,99.0); + exit(-1); + // REPERAGE DES PIXELS ACHROMATICS + std::cout << "Init achromatic mask ..." << std::endl; + initialize(achromatic, input_rgb8); + mln::data::fill(achromatic, false); + mln::data::fill((achromatic | t_achromatic(input_rgb8, 0.03)).rw(), true); + + mln::io::pbm::save(achromatic, "achromatic.pbm"); + + std::cout << "Achieve canal forking ..." << std::endl; + input_hsvf = mln::data::transform(input_rgb8, t_rgb8_to_hsv()); + + input_h = mln::data::transform(input_hsvf, t_component_h()); + input_s = mln::data::transform(input_hsvf, t_component_s()); + input_v = mln::data::transform(input_hsvf, t_component_v()); + + // quid des achromatiques ??? + input_h8 = mln::data::stretch(t_int_u8(), input_h); + input_s8 = mln::data::stretch(t_int_u8(), input_s); + input_v8 = mln::data::stretch(t_int_u8(), input_v); + + // REPERAGE DES PIXELS ACHROMATICS + std::cout << "Init low saturation mask ..." << std::endl; + initialize(low_saturation, input_s8); + mln::data::fill(low_saturation, false); + mln::data::fill((low_saturation|(mln::pw::value(input_s8) < + mln::pw::cst(100u))).rw(), true); + + mln::io::pbm::save(low_saturation, "low_saturation.pbm"); + + std::cout << "Compute histograms ..." << std::endl; + histo_h = mln::data::compute(mln::accu::meta::stat::histo1d(), + input_h8|(mln::pw::value(achromatic)==false)); + + histo_s = mln::data::compute(mln::accu::meta::stat::histo1d(), + input_s8|(mln::pw::value(achromatic)==false)); + + histo_v = mln::data::compute(mln::accu::meta::stat::histo1d(), + input_v8|(mln::pw::value(achromatic)==false)); + + + // etude des cartes + + hue_concentration1=mln::data::transform(input_h, + mln::fun::v2v::hue_concentration(histo_h)); + achromatism1=mln::data::transform(input_rgb8,mln::fun::v2v::achromatism()); + + hue_concentration2= mln::data::stretch(t_int_u8(), hue_concentration1); + achromatism2= mln::data::stretch(t_int_u8(), achromatism1); + + mln::io::pgm::save(achromatism2, "achromatism_map.pgm"); + mln::io::pgm::save(hue_concentration2, "hue_concentration_map.pgm"); + mln::io::pgm::save(input_s8, "saturation_map.pgm"); + +// cnt1 = mln::data::compute(t_count(), +// (input_hsvf|t_component_eq0(input_hsvf,-1)).rw()); + + + // (I) ACHROMATISME + std::cout << "Achromatism" << std::endl; + cnt1 = count_histo(histo_h); + cnt2 = mln::geom::nsites(input_h); + + percentage = (100.0 * (cnt2 - cnt1) / cnt2); + result = percentage > 99.0; + + std::cout << "Nbre pixels : " << cnt2 << std::endl; + std::cout << "Nbre pixels achromatiques : " << (cnt2-cnt1)<< std::endl; + std::cout << "Percentage : " << percentage << std::endl; + std::cout << "Image achromatique : " << result << std::endl; + std::cout << std::endl; + + // (II) FAIBLE SATURATION + std::cout << "Saturation" << std::endl; + + cnt1 = count_histo(histo_s | mln::box1d(mln::point1d(0),mln::point1d(100))); + + cnt2= mln::geom::nsites(achromatic | (mln::pw::value(achromatic)==false)); + + percentage = (100.0 * cnt1 / cnt2); + result = percentage > 95.0; + + std::cout << "Nbre pixels : " << cnt2 << std::endl; + std::cout << "Nbre p faiblement saturés : " << cnt1 << std::endl; + std::cout << "Percentage : " << percentage << std::endl; + std::cout << "Image faiblement saturé : " << result << std::endl; + std::cout << std::endl; + + // (III) DOMINANCE DE LA TEINTE + // et peut être 50% des pixels faiblement saturées + + mln::debug::println(histo_h); + unsigned peak = peak_histo(histo_h); + + cnt1 = count_histo(histo_h | mln::box1d(mln::point1d(peak-20), + mln::point1d(peak+20))); + + cnt2= count_histo(histo_h); + + percentage = (100.0 * cnt1 / cnt2); + result = percentage > 95.0; + + std::cout << "Position du pic : " << peak << std::endl; + std::cout << "Nbre pixels : " << cnt2 << std::endl; + std::cout << "Nbre pixels proches pic : " << cnt1 << std::endl; + std::cout << "Percentage : " << percentage << std::endl; + std::cout << "Image fortement teintée : " << result << std::endl; + std::cout << std::endl; + + + + // Autre possibilité + // calculer le maximum de la teinte et regarder si le pourcentage pixels dont + // la distance est inférieure à 20 > 95% + // alors +} + +// 3 cartes +// 1) carte d'achromaticité d = max(|r-g|,|r-b|,|g-b|) +// 2) carte de saturation +// 3) carte d'éloignement par rapport au pic de teinte + + +// QUELS SONT LES CHARACTERISTIQUES HSV DE LA BASE ICDAR ? +// FAIBLE SATURATION DES IMAGES ? +// DOMINANCE DES TEINTES ? +// ACHROMATISME ? diff --git a/milena/doc/outputs/accu-right-instanciation.txt b/scribo/sandbox/green/ChangeLog similarity index 100% copy from milena/doc/outputs/accu-right-instanciation.txt copy to scribo/sandbox/green/ChangeLog -- 1.5.6.5
14 years, 1 month
1
0
0
0
last-svn-commit-29-ga85f46a Delete BUG image file in milena/img.
by Yann Jacquelet
* milena/img/BUG_lean_ascii.pgm.gz: Delete this file. --- milena/img/BUG_lean_ascii.pgm.gz | Bin 75726 -> 0 bytes 1 files changed, 0 insertions(+), 0 deletions(-) delete mode 100644 milena/img/BUG_lean_ascii.pgm.gz diff --git a/milena/img/BUG_lean_ascii.pgm.gz b/milena/img/BUG_lean_ascii.pgm.gz deleted file mode 100644 index 7ba3e9d1b02e3a41704448faf72a6c7afe2e8259..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 75726 zcmV)EK)}BriwFqaeZols1430tUu<PzZeL+@V`*tFaA$1*r2R{8CDHQ)2<_`rSYiX4 zne%?k4k5%2Mk6$0J3=GD1`r@VKV2syGUJr}-^_1uWw+byzP`6kR%T>8{`>O$uYUe_ z|HJ?OfBS#_Km8B?-OvB!fBg9$|L6br|L6by|NMXa)c+=@|LN!FfB2vOfB)T2F8^)W z|Ltx+|Lgz$|M-9S`G5US|KI=X|LrILH|2lxls<m`J^p>{Pp<PP*YWRB@p1ioG&~9( z|GrlCzmM7eT&Df`d@cPv_7}?@?cX=Fe?O>ad$fPw)ZVXG`=R;YpY!_p+3DwJ{d<h| z?@@l9pOOE4vVVT&zmK!x@$WC^!pHINvGK9v>jNL{dmj77f8Vq!9?L$y|J!~){`=wk z-#_~Ivb>+?RQ`SZ_w3U9^?4poPV@XlPRYOc{-d1UAF%Owzo(rCe}Mg)dOm;b3kiQw z{V(im?>Bb*Ipgz+kKO<L*#GeU1^>75bN}G%&nTyXf0+D%Unk2yuK31;-yQ!bXZiJ( z|6sm8Pkhn-!TV=^v%V(rSa^{a9`9THzWQt9z5n-3tJyU$i@lYr<3ITKpXGngv}C*3 z&h=#%=aXALSDpQ3$JO{g7QQ*z=jRH>=jSo}dmsCx;~Td8FU9`hxwLsC3jX|F+5f)p z-?PmBe%+`1dm+oer&@A}$NR#LeV+c$ocPr?F3J_Z{<#?cJ(Kgr_k}ut!FM2^7tFpf z<72`L`hHKx!>;7Ve!##N243-jf4uOHWcwaI_WNu7`xRS12lUDLeZl^-a`2oN^gk>I z&sz`v({g}P@Sl}~$By}bRt}yx=Kssf!DC<e&&mOQo&T&HJUr6>NjZ4z^8U}t!DAQL ze^w5j_y_;X%fa*3ga5P~oOkCxEeBQ#{=;(coD+J=!NTv&5`f?ToN}J@CNFmO7x?jS zI<Nltl!IiCs~i-RgKRIuImM%+6uh<JJ>Cgrf#sm%W5w~WpU>ad<orR)LBhp0?IJrb zHZI8Xf;POs)34@7kGY+Nd|l>te)dls4<6R^!^4XkdY1Z7<oKsg?MQzd)~sDY`H8YH z@QnDsC;x%==W@P>2Nb`~kQ!31|0RB1mWcZ6gg<xrOY-{E>&3H+Z_0(Z^or$`nWH3} ztFq#(;GKKlvEA+2yamcn{JHP6xaXX!u;Ek>Ji2{67vzkqmsf6i>xq9e|KY-M#}7UK zsN!S6=lJ`#B%HIe{(a-W-?jXEORXGaJnFwc|N95?{lNw0AfwXdC<n{SW5-p<E3@In zD^Ui#eiSJOja|XO52<#kpU<1T`c*#9I0^$l^u0Hq8e7kc_x=F;eXG0%%|1WBe@E$D zpFf`(Tklu=)Xw+#H}oG{O2R-<f4`UarG!)bmVy57+4O%;yYC<C6k2oyr!=rc6zL$^ z`SWxB^3;Wl+JQFW{N5-D=f&;uqWX*6dGi{6_lxr|{m)Sf^iH_^NZ=F~KYVfQvz()R z{UiQIS{@$$;r<5R(0TN$mxOqR-S69v{ZFiF>8e`yjXt`7c&2uZ`Nd}6RIg6SUbt^J z@cp|kH!trDigX4gn!WdJUF_KsI)rs@U{BnvJMKFfS7MhAp<PFxqpS=F>r)1j{DUqv zBuP0a*AKF1GTw5K{vG{)CE#D*R&qjjP|xT2ea$+`r}w%Whw;27xLIAtouy$&X^<<{ zUs$iP6@RI<Bz^v2kpkVNCJ$Wp3$OgYQ~SeC$x8uCW0sOAWfL!Q)L4G;e8Y^+;5-&O zgN^clcP5W>bwB5tcpLq<Gx+!7{q$iU518<NecH#<ZYBHkxpuBnknx2gt;CiNq2t0s zuXbKTeM~LXU5@+u<L<ZQF1e&kEW3@yV356ai1xesp|n3w>FW!7`yt<uu6wNhpu74H zx#^!#B}q%kAGGDV*q>9pr6?s{Y}1dleN+7$_wo}by~^v=<YM!yly|g(TjYw)V6lkf z+$?)%&aaeDDM;4TvR`LE>!)<dMOdQ$mzz4!tsIb-cL+P~a^4K<gt6s^@SER)^zUNJ z|9+*Cnsf*#3vXdwc8<=)cdpubs^4=;;JHC183=Tgl~aCwU-J|FMD6IGwxP(t(B<>_ zd57Mj^d7!{!_QB7AOHSgCLVxtP>2=eyG*hqoB`pycuQW?9oWGs2R(*`QxX<BhGMT} zPIenTzx#WF-;Usvf{uaVEe9PPLdF1*tt1Gp@K}Ao7tZGjHsC@#9fH27MPB^GxmXX_ zyk5{aBU`$MEqFqXQ_Sul@Utxg0S{%9$z$o5KjeQ|pTabxzhCnA<9f!AP80E%Qe)bu z!rcQW`jhmz+kdChd36AH8Q3}?XidS@%3k#p>5h(?l^z}TntUej)X?q9EF5D8de|&C z`6(A-i>vx71zrvmV5t8^dC=LIfJ0?r0yK6o#U&U528MUed0))YPSuYq_Dl^0s8*N3 zY01qUCG&hF&a%7-kglLc+jZ5Fde`4~DDaE3vJ@2S2>$&#|DG=%?f21VIp7N|UBeSK zb4E!xKVV}}7zVbS2g(9VLERYNa<Qv&0TUP%!@@+Tuu%^9LMFiv?Am#vU0^9lXeHQ! zE-42i@B@Eg3%i0MFJ`+2g!`7c|7eUC&rbi`xcQH(l!qxJe!5QkV}&RE#K-ZY0A3WN z^lOaatoYosOqU;~y-D=~b+;f6I4rML_cLjq*FY!KCHE&U1??xAohChP3GBdoxC%%S zBj34=o~J(zQ_M^H`G%pP%gu}3f+ApNE}kD$JV_@Yf7TnE*B7D|-X$lDB>12IU2u87 z14H?ggSTV&_ru<*)@-VO>=NdXR0Y|(ugZWA^QWiHoV;-C9S+lhVal{IyevekdOGTN zIQaL6e=pF#=lQQISk@h!Un~Cs9cstKW#X?=Fr!$XuAs@Fz;b|6(Ci1>l#y{}d{`*J z4|ZS&Jner#ir64zl!1cDb3{3q_`wb*5_Sz3@rg39r0JcX&lM;5BIliFXa6x_Oeqb& zCyzLg`<~DP@L#`>jJxOG-&4HhXm7y{@~1c@8Cj+jtHH{)KXBmwbOhrw%Km~4brq97 zFDfwvy#1$OSCoe3h_Ust3oX}suLXz@9m147SeM;cmyP5ZUz5}gxzqWip(TJ{>p1m| zYltQL3$_v&YleS6bPt0S&#+MA@xG(88_wnv1Fz0g3io|=`s!gwS72q~xoX6Ph<9nf z+BL34YdX*jzXz&L>jwV)u5U+RrQrRV04|EhUauAL6aPXNFlJ&%sB-*S0;<7>&ECDo z(clcIY~eJYGVpc>6=eZ8`%@CC;{?D8rc4gFpB$iJN&T489q@vi{yKiTf+m-E+@o)_ zZ(iLuwr@IEf5EsVi-F`z0Xuxt-=*i?U5wB2a0<qlWg)Pxd-oHaK>pN>@3ZT^eh3Ir z$O#Ie{zfjogF_X3*6~<fEzA$zh#$1{800{9&bzi*?Ta;eyG1!*hu}9b;?uesZ@k#H z)C=tps{C1&jOU7OvT109$P`u|QY%oLMhC1|PDfxJLUUO0c>#tOS3IwaFT{AWT2T)8 zy8Jrz{Vxzk5uEiI<rLs%dwPgHFI-rx6y%MrpxGna$E$N<@9&^Z<9?@ou-F|%`W*R& z<Ik-E$^qcT$KDyB6S<;VwcsHg>|mf%K>vSk_`@-SCpL@RR96`iP!_x;<5q>O>BN5L z00}jUvA>Y*GY8Ml*^2GLqok#qoS@_U{?G!-)jd4FiwzkJUpR4J|3NGWt{>7rOT>Ov zwR_#!uQlhR%}Nv-1*OWTTiTy{Qdg`%pKkuVsLN3sdv~e~3QMZ}0Q3WD$O||bq&TF{ zAGrD7r~ZkXRF-eru{6B)>T)OafkDx7F9GxCA}ky<1ONNGSUerVKsm52!(%PNzyD>~ zQ?{<4$_=Z@>oBGNZ(0h*=jJs9DQ>^Ux0?{x&|16)>tC1j@3{gmXjT#gM*Jx<ByfO| z<?9nKUJlsM*D)2C0n0(Uhl7?`s3+bkOkTO-a>i?Mj(tWsNGJ)|f1I2BxlULH+6^C` zfuW;2z($fZMeh!5+4@|V;!?Ip`2&a5)7|}yJ-YV)s~p^aUVkj+H*e^_zaj3?QKX_{ znAhWB?YQg4mfF&P?LzH3nP|~62ZZ_gAC{DZ`GH!;r%WXNI>W((yT0~&P(Up{|KYhS z8g?Mm5q5|B9vBV@K`8<gr+n$fM&Mvd`_N^&kXcw+b>0+bqUB0ZP~^M^esDU3cbDD| zPN0j&$6ACgxFYylBq4Y?NHRPvDG37`Nxw>mpx^_ju)bp)HXADbWLHqF6uf2NJ@#iv z*ccKD%0mq((HAIzuRIq=%U{G2ua7SmJFo(lhk_E3z#^+n$^l@ZgofvR%MX+|gmchi z**M>e?S1j^2OkW$edMjgc?ZA}&iy8~+fTFzQ+7M~)9`j_x4PT~_f71%R}k|jmICQB zStvoFD^@TCoYQ@vl6&%J%~$<DmQkgAI>aH^L39ZB9wRH;aQ}i&^#Z$x1TCQiro4Bp zQX>Q<_a9Jx(`(M<U+@;6<6neLhK_m<@RGKagCeJX5i4jPFriC1&=%r@lnXrYTqJ~Z z+^4V`I3(cDdD_+dKAV{j-{5Tqo|}l!fh(?aCT#PFj_5p!0Nnw6Kk@!&**fw@Hf5Mh z*V}64fVA+_6(p2^cYCl7WN1S}!`E02mJCnx+Z7PB?KeZ&xk^(o0%8Z%3-;seF-3vT zi)f5o8yGvvK?8OGSP=}xC+LU;93*8Qrf4Bfi4YpnDF;@Eqbp!ZaFnKhz?UR<!hNCY zpBsAp+$#Hr8(KeW2|vY3Ht*7!SHbbe2NqI}b>l6g%A&c+3DsYz%h#iL$ue>ONj8qB zJU;)4o@~Ej%O8kV`7mDkA8Z+Na!x6j^1!B^pu%~|!w4%5Cn}|W3vAf(ul2%J9-MT% z1Si<KLD(PK;*@S+e#$~dk;=AL5B4&d%WsD;uxcm=SA74$Z#umUQC4HqA9XbeZ>h?K zxTPeJigrptvaX=x=pU?rxWUF&VWTXp(=ps-(zmo#_()Y)-1&nUl)Dr(M{@elpN~@x zz=vJv{|}7#@9l5P%EBoH?{&f>?nk}cEM;~KzI4nYZm{|rtd9j&n6f_By0C&cd<xi1 zW!8P$i22zX==qr!>hs+HL%;g_z#T<W;hkfU)}P<ni~c$K%4e%`-6Vf@&%ILEf^H@m z6x!!euh-{^-?e^*0xd%8^P<)Z7>D$x2;44j?@CT6b^IVtSvJ}xK~#8Cj(w9=L;Y+g z`#mf~Gn}PW821v5=((4M5v3rrwKy#TxJkZdc*}v62ZI$yP;Tau?!e)o8kp<Frw3`n zucLf*mW~yiTgE^q;P}8hD0G7i9Y!p`5{7?oye5TRL6$P014D@y*zp3=jIdRxTd+s} zhXU>%T4I;Y0=Efohk#|{=?YGppyi-^h{#Dk7Wtm;TgfLFA659``?ImtGgYPMb%?Bg znqGy>Zg}v9(uSY<=kBEIb-?Z>uL=ftFQA``QniNs@9j6uYHc~mMJwC-gI}?vB-|=Q zg$teR6xcxd@L`MG<<dohyA&hV6-;!-!Wx_FZt#|DT;B7Pm%xcxv4SOo!jzKGV^Z~P zq-qg(2UJS4FWR?kCKXQ@fg8M!{Qi)P4clrz(II5%5R9vI{=RI16oZmwZ?V7c?en62 zN40ffOR-FR3(h+b@c28;s6>Zwh6CaTC>P$&UjqVPFs-G0VM#aQfG{trk+43L7Q%M~ zwKg}D1HAQIE_Pcw8uW3k6?$xKeS44uI;^o>07>C-&7(3tR7G>KKDu1l*A2aY2wva8 zV15WcO>Viqi2oiy?dMgBG(I|nj{fB|InDpz+i1UT`e%43SL-Pxmi=?XA1a0_LKUb2 zA<m2a{@go@@}bFp$CxEAC|)z$?=)eDQOk6T)z3NE+=n(GpvzZ(Pb|YYqUwDp$>-zK z@5U(n=sF>$i2i}gwvhBE5RB=a!DF&K)QGcrEV6lgJA{cxx1nKB&`_OH|4`9jH!itB zxu_vuOy#&<uuQZK0x*J822u<MUJ5$Ct`H)i#d|;y8RxI|il=;|3@mwAIe0iJ+`U@8 zN4V2s5lTe=@8w{!6cA7BpFyFEvKjJ6at-|Z5&?(#kv6tl9Ok^Fave^Vhv#1J)=%p& z{tN72Tu|Z@7-ARvetZy%{+ZqtNhb7h$%2P;2+B-NpOO%;^b=)I=@LV5Y6UUB3xTEp zX1mE6OaDRsl!*L`B?HrgdFz-~7M@Oy1^rq=vhC;)&Y0f>&~9?I4rxoj7hsX$!JA>F z-en==f3-aMBb6T1NCF*y?{XPG@ZZx9Zc@gE;q4ao=@!nWq4Nk#ELdG)GvlMbYwc5{ zy9}AE_V0N(%R~^5-;W1EWVbK^N<3eal5pV0!ZH6_JExrNj$ICbnsfY>cJ#Iu4jlBK z-@`(W;(f4#hAmS^Iml;Nc!HMLMYK>wtRP$i9}>2Z6eeg_?u@X1?twwi(*7V`(H%U$ zyMYhZxYmcHug4_mMza4g;*ZZr^6d(m+|Y$H;hlk>rS%cGOyRLjpNpQT6*nvBrcY$y z8+=K~&NkF}=dVZktZQy;A)bl<3I$L*3%9^O&M_BviKA&cBYXQukE(P6-#)j==b2N+ zN4={v@-JaS`mpd^F5NLP6q|uF?slE*<q8Zz%fT{@(=^`?^s!aANy4r7YM=ab<)lz* zZo~E4^uHZICQblOL9HkO3*WOp<-qWT=coKNAP9kjt6k?5jH?X5IiU$VtX?FhoAFV> zJ0PPjJ1g<ANuh|Ou?q267|X71&e0V>yCCF*A;g0u7vB1bmTbo9T|;zUmpE+QbFW)f zO!*$2i-&IC@&|wXsuBAoGr7)>o#OHbh_C`<TI=_qz;c1ltp)X#vwoVG@k@JsFBhwp z$1f#Opg{*@>PN#Lql--$ju&vNmP6jivf!lj89E<OES{X$mY0wksmkt`h(WLHrdR=i zhAe#hd>?(4@VTC;Q*&Koz2F_ffNjf0hcJO5G=UUtfXIgn+HpZSD*nBJ?N4W*o;ewG znr>SGg9!(^01}Yd2~3m&{Tk&<@5Of7iS=2*v_FP~{pkkCE67R<-_lMLX)*d|zk`M^ z;nFz0{o6LZLd%0C4wQl}3g;ZU1m7eq=^8RMO>{@-QV#0<;`+2Yq$Ct&FLx=*pT(I2 zc;nI+M-MmjUOfKz#_?HC6uA#)-R7syW{K=dJ@(_KQTRY!NxQ25MJJ@I%=HHisp|%z zeFlV^4Renx`BN6Ms_<kEb}Nb@okEvIBi{1Gda_{;<pPF+gE&4+7#(%f%{=rCf~uJ> z-u;#)`Ky<_281H4C~O-u)m9+hHscx`4B;#ti689qc+45Wo`p&IR`j%97P`<C`wjRW zVU%wW297qChi`ZAmVo*alQ%wMm^h^X14Mb>9c~?qVzTSg+YezKQk_`5bFeAHOTiGt zMt3}2{w{erFife#3aKwC2OAxNDBx#8c^JVy^p6`#XSNNFFHUK_zW1dix7&%!o*?%x zP_F%UrdjKwD{Xok)lFmn@N>pz3t2uKgYxyYXt!UEh+2aA-{jYGGWH1EUJu>XhiDmC zpJl86I_Zyvq7<cH6p1FUOVP<o+|m4L>zxq2+|+{JxL}3I@{|Kw?Cl^Tcu7zT4{cQw z{R-AS1Y9(ub=x8Rvi|8D5DFd@Wnjv%Ku+~Qhp+)DHt!CeQUEB>N-Y(+k!=~4O8BH~ zmBMDS4HHVh#7A}p3CF!lXVB3dpmdy3h1*7u5#r=33OGcmsI0@mRc{j%M}gcPE!ZV1 zLF;jbEI10D>*77uFY%zgWq>{?J30em1Ee9j-N}H<;>A`jLQxza@xr<<MCrhvxc4qu zlHv5~gud2?<Wuz&=MR>q78U&u1=?@^&U3ppm0%cN1cWRLN5$mq`~Z6-R#Ih1Qjap7 zb^1p+QM6OSQ(Q`*%pcZa`;^YCs6~w*;19ktQ%XV#ZMsWO3e837D7kRp2B!8LW(e+o zSVV?1RFFGw+08{Y`qGc~2R3Zz3QiG9G8`<Ff-c=bvOgcm;{XrAI0%o`1WpaFYl89i zE-N)R^vWT-*_Q?(8zyj0@c>q^WT`j-4>nUUR+fkDW#RF4gL9II4;0zjc3CQpFgL?i z^115j1-4-I;6H%)<ciMWU<X`(FW&7lx`PbU#C#76iWv+*jc$eH-9QpxVTd7BleSBT z1RrVB$Mhh7EY$L6&(kiiA<?1hsNX-*fhL>$`Jv}!T|=ZlI7r%`gx#JK)GPS1N56A= z*NL+uI$3EQE{(B2^W<ND?mK?_LrnJ<tXO0Ls{_LI4M_k8?Fvd5Ac!yK<Gei=?JpcQ z9>y(>icK8SwvZDpfwF7|#5(QrRdUKv$dw-N2(H0k<6{lnfE$Jk>f(FzKN!M*ritaC zB%2<NyCOCO?(^4W(~vKu_|p~an`Kx^-~;azavn`|3f3JwK4Ii}O&PZow8;tHLN6M; z*p!z=SqbPx?wy)YW9ny+$n-y<887bi$0RWe4~ZpV%4t_0#LNvsx|zzZeBMI%%Aam} z`^V>=9KK~iKTjV)S@~`x`!7ohlaRE}=0IoxjszzAAqEroPZ7eVt>m~XX5iUx5q~ZD z-gWPb$G(KO<Kx$xS#!K@JpZnp_b-j{Asb46UG5V3#6YyABT_2X{0NxaM}nVe2Dm@| zd@5AvqHrd{BgTm?W?yQkTEq{f$7^w@iZm(`0&<xO8zvbFzADB2DHrW)dXVFPIfZD; zkkH~;oOg(W12KfR0mxu4`_^&GqnNv5BVI5+*ufS?cgHbz+mZ|d@(ilcIr1B&0P>|u zy}}}FxIao~`=N33p0cKyx8Gr%;uOcRjs05YM7HFI=%BE*wUABYu0lL$7#Jp4${8Dm zA*Vf&Vw67Z!nhgBTwAg2yat9YrQl<gc9X&CA2)IJrP@l`|E~SpWycs>{&Ke$b}x>9 z=yEjPbN-UppD}K`LH<j8c}^KPNB`d!X0cN6?y}yp@CtC}vcDfN_R4rhP6p~|%h&jD z8?*4L^T!WHPyCF^cCT9U&8+ixVF`S=V$o(@f!-pg56*WvsB#ewndmzazx8uJ%BLLk zKZwYbE>(5~D8^n2x_q2>H;|ij2vI`p-8q}b4qS13HjmR((0K<9i|XgyA^9B87Gw?y zQ!oQM8VxKK2cW}&?!Y>P$7)BH6+{i5QpvJes2>t?n4CR9FdkC+Qk288!z}SC3!yrD zTqaGH^2Vv|gb^D)#{e<P$7#Jl$l$U@Atd;poABGV+<W#PINPr=KY#lDF!Tx+fnOU* z<?dB+x(c3w{kruYux+?Dq{5c!D?CD7VES<fe|xoowQn!yWIv}x7(lLG!W)nM+ozsC zcl+9_pn2VU-V5)P3h>M`v4TYeZ-l_(^72!jMgOH@d~V<+f85lyD~JV1FcSCIBwspa z?+!K&8!tqDPRe5DDXt$Eqj?3d#NRa`9S<oRjuo&A*fJ34P>}H`@-g9&!Crpf!sCj- z&0~#$p+MO1E)NF;?o>VRsv86xe?QGDN&<%kryUJ<II<yOV?a1~0fq#Y1pc6+)=?q@ z6{9m#CKh%|7~jrhx`jBpZ?2O6uqhkKirLOt$`}TYx;f!N5yJ@9p|cGM6OyUyqyw== za;#A|3)NBfC$^3ABM_^y&f9-D*j`>A=?}v3__P*Z)9ZQx5s#ID689V4upDz`R{#vV zqE~xof>&bS3kQVvs3#o#fzIHq6&2sS<?pw33UBFH=J@+q>wxPZsqnUZRxw3x`03J9 zKEGNjVM2KhfR_T@DirSwp5P%BF;bNv2_CePJ^<eEHePs2MTUg$oxe&MsPaNL+|Wz; zbOJ0q8PB51=P8B*e^v>;pnQ65!xf=`n>0`k3QEGehOp@(AlC(mtZbne)q9)Z1mxmJ zKeh^kuwjptg0CHF{9}}d+njb^u11gD?SanZ4jpv|%9(-eO!1uB!a<mrGStDUpxH}6 z_D(r?2ZbIg=WpP`aIe&MlMghY<#JY>!tE-bMf|09-XHUW_SyEg&oVxLHwf)BWQ#@a zrHz#MAu65E<xLnY*Py~zZnH6kDkJ99+X=DQ0S&U%1`Z3a;WxX1w~aVh!p7eXbP=!C zcAgI5IbVE%$p!h%G?$vN=4jz7^<T_JPr#%3p1v+__4@2PvM>=(p++H^;s`Kf=^ny` zCfGrf12}OnE}GHw#R-Ht<Q68hUo#!T6ZpW8j-W_sh`WD)n^}g0w@~{x@o7(caW{RJ zhYbtt5Z>kEF-EZMC6<W`&3}^ZK?+ABmmu|k3lB~(yc|3i<_IOT)sEyFN7j>DsfdfM zZP6gGGf3dn`>ldeIYsQ0voI7l>IuwH+&Ljn85Rc0!TT716j2gRIiSg#uNvCDZgA>R zl|>_OE7iBxkDFOLp4dOG67%Obv^ahgT6-?BzONU`A3va8n|<#jQx^yIjH{Hi8t&0? zRp!gADv8pj^4;m;RJ-EX9~iNqQz+IEbX<(5T+CzFVR1t5)bKuD<DqvbTJQty3q?E0 zie~+iS3lR{<7)%#z~vGye)*VPXL_aP&@Rm)o<WEVO4#bBE%)u|_wC191Q#8*&)r`@ zaGxxa=LFghxiEquc)*Z>06BRX@i6q4ic;{IA`+th-uvz%d%4NL@OB6dC83=c-=Ngm zq_<x(DD3D4942hCQ1nuu&gl!^++?}9!t@}EB$P_U{x&&nO88ZV`>`ZxEg(BCIHfyU z0$HKZ|6~c4NLu0wXZ2GKUeEV}au6Y|lHOSE&R_`F;Cx<hPZSr5E&87{VZL;^S&cu| z;q%%=iZ;J~*teqOr3dD=l5pO74GPN@21JYBz`Na!Hj~p>MoD0w%j_yhL?0i=ygR6Y z`W`s3+kSY!lk5HSgc0~F$$!h^sSEFrum~t*lmb4weXU^JpC9p5@Cu3mlHWC^QX{HN zAW2Q~*R?genmj`6n_iC;3oV)IPbuiPY@kpMEoSINrmqVQ*qkz&{PgkZ4zhgAGAQ6# z;qlm0%y-M+gLSc@eL94RlCWc7cuT@*aux*pjt#UA#fV-7T^5L4h{y*km_b6|3c@9g zIR=KSJLuOY;qjalPiD+QDi$*3CPBMNIcRW2V~cRvSAzd}7LB-8-V;r;gND-3jhgiQ z+BUkjiJe0Kh#AVq^k6dTqD9n&rr>yKXaOzyW`77z>DL;fN#>n3!KVx8grS$%XC>to zsK5u;2-{6A($er6>^N<q3eT;<YOuo&J!ILjKP94IcxZO~xp7z~wtG%(SePEpuu!c# zIFE!*0SuY<^G?T_?Dhmt9Pe?zXx<4(iSXJhu3+{<lK7qsfrOSAgk+bHM@v4u96WIo zFP}YN!wbkVkUt&5@EiXV13~+Ml}q45HhM)GzU7}oQjrBnkO?Be7We(%2`f5=kkK8? zm$F#SD}T<z&z5p9Wl+e16)YJJtO1Y#Va3s}EyN00L<||)rqaaO=zUFk7S0h78_dY3 z6yULNHRmbaL8ZL0c#9B31WFpIaOQ;t`0$N^aH4XDkl{=W+&ZEQxYW->^i5h8oW%0M z6WxqT*vii58*(#KB<E^`)9rD&?BY`walaFIB3t8dT`uvYsZ%$u6SZb<-a#3eC1G)< zD&59#Y?xAY#0$Uoo`WR-Bj{K%PFp}e1{!qK3fOU+PGO)cXebZMhKDmipllRJw`4K6 z#+@bdtIjF`thrR_@w>lR)&wNfWV_IulIOQrIITbTilNKh{zDJ&X)KG^;buMI4SdVi zpx?42U#Kah7?0;(Ewp<d>Ky~{Nrx3-f^fQnm#0+Bj5*WnoXSMrz`eIG;bP<j<V9to z@Cow76j5TSc=47{U#j7iTq-`^Vzw3@shI;L!qKQQT2Pr~Nya%F1h-2Q%%G)EMevrH za9bH*Bc5_#WaY<f(!f~uGEgJq*}H;yZz7$F<cSO_63ZWoVvRrV@Zr*-;kmKJ@tK8@ zjo7u5Za4KevU<x$J%kdFu}k+P_7>NS--8C%-?-e_W;JmQ?AYmWI5<=!EFVt=c+bu$ z1Kr92zGy=N_Fxlm;+p6b@cFv~Ii14UWq>z7`<)}=>)iH<8mb>{LREvrEg#cuZ9@|O zs-Hz;M=5Z;b^NhrXg5!Z?S%RqmL#W`?}iQmUU&pE@a`e|yZ1Pxk(7({MLgLt0O%YI zTZVoHg~uj^a^9hzcfF7~EEMSu#O~A~!|*zMoRdUiLP?)BL-}kc3;uDn&4P6WC0b2( z24G;G%X)$m@SfUX@Q*=c4AI`-QV`CGVRuUqw?#RaSTG(a@ojP(Pekg%(KIbdV9+E6 z=`87vW`?U-)DC(hQ%zG2<b3yEFk&$4*0@&?EB3<Y-un&%9sh|B6hr8~Yu<dEHNy|o z2ZSs+2urT54vd<>LMdX)k%I#|S_}*aK7=vPw0P0yeBlfNDY!}O3|_2prN9e(SeV!2 zv2Q?NX{JHd{$vy<;e?iu;h;r(+}74@kGgaSN<>e=g4iv#+t%Cf*dXLB$6hIm-yVO6 z*n#8(4he(?uf<{iNR#gE0bs-Y2LVC<kv^LlKeQqT+HBZO=#(kUy(j@&7K`d$MA}hS zUcr<VL~)B`=Nnvpsq^RhH$M}w;kmb<RY2UkQCd;$-$VHptcC;X-9ZLn!*Rs!xl6HP zP(y2L%ZzK$&>g%m;(GvJ-|4o4k2KP!E0{5^oDv|!1TYhy01?zXX$Q7=DMR}0ixTv_ zEdWCOl!NJ~`n*P~{EF<h0l_tr<nx6hF|2RV0DCM7Qj%~lvd~h$=ZJcytPqDW3-6GU zGZu{1OM+Q?p6y~nXTS$b0KdM`5p;Z9whDhMo8gViT7~n)4Pq^I=u?;<RRRUJ*W%}X zCx(1p#ONU3nHh`Wm4gRx1{vep4(Q;}ymt6R?+t+a73h&K@r~XAXls#W;h41)B>9W) zppdRTXz;1=co%1{tnsW9cquzWh&*DwndgW~@f-URijfN!_>EJThk_@#m;sq9KkpCu zA>S2PV%-5`C(Ot1yVB6VylwnI^S3vKCUP5H|JZ&mqie?w;2V=x*dd*4`H52S3bQ$m zbcVM!iCxO#uAZes*eC_(FQ?pVs@$lWxN7K4tIMO&vu=vJqI3zaZU&|@SNy;k#wx;l zOkx#QM9`3ARW;rFGD^V#rie!1isUzV0ubG5Ks@fyC=6^H4p#8C2%T)@9+bs%+(AG% zpAUSVWjGk<3LICQC<z@8V>g&Mb-21LN<#Bf|0v(+&Ta1Eb4iP=9wbwcq0W}p4%q(r zWjR1A)4T=C9|7Q{0kCH356QArEPr$W+8yM-x`G_s0-q$t2k{&?5aDE}gR`Ls^FB)& zfEu9tm|s7-gwC!&HUtMJ$bvC;u|SG^6}$C9-0=1%|Ni^aB3!BK6<n>{;s$=~2)g}% z4zb~4v|lD;u8T=ZzoA4YIZ+eFkj94IzJYk~mV?tBRADMtkv8In@3;ZGf`+c(eDnSY zo-~A|-u8Sx*3y3A+C(-1682^D`ThzvKM#o@?iA#H|2G8{mSh`~&s9HH@5U9&FpYCz zrJ!_@LX&r_Yz|!!2G^qqWpR>!gpzQE0sso<hTmg|IH#R-MH?8N01`T|#cXBZ?cdMC zk_ykS=3>+$Dcptooh<LhkXE8er%+>9;1mKy;}c?zDHI}Z3X*IK$eFDYjk#mLV+c)_ zf3)I7z7_-HGy4B31^LqrG(j+y;0XKfV@y&3U0;TL&%@D@^!8cGK=%c}hgX2%AOlFK z#0uCx<d`ttN5c)i+63~vt-(Pj#zuEABq_;mSgt>QJA!jyi<E=G)L`1m%}?S&x%fyi zEF_6=9<VL}aA5yKl5$Y5BOgxdzXpVU8>uSAl^P~DnMpD<R0qAEyH!}%_8`gvOuonb z)R-$|u>am+xNsp$qE<(zP-DSp7<KYkt!Q>R-s1DZth^Gm@bga6)cP=!IXM6;7+@zm z-yq@h5n_e|9Tvcb>;~2l5Mev6X#ZfF7wDWWNjWtZz1<T;^Cjb3lLv=`CY7FxqmCDL zw@^0w{k4fNfr#r0#($5vBXwkj8NT1te{~4yE(JWn=;fYUl%VZIzuC;C2n!;`Gc(iz z{J!^~^&Xgj$Oo=m1Q#q9rwcq6qcF2Oz`DT|%_%mK#{gj<&AqY|O#8<j%}Z+^Yg6b_ z-hzD&CiZ{t59tM*Vc#?=pFT?|X#YibU}e;px(gXhEH<Yk&<7<4bm-J0!ia$#Jhv;t zlI}pgy64AbJq3PXzU5uog!<W&Pa!10h$jWfi8-9lMXp`>c3g4(;}+wC7StNx2v4jW zgz>_*A;T$;;iWFWK{no7%wH2)!xd|68&78d_ThVK$C4odxB*GZ*eFOTz*NCi!^9e5 zg^)kozt%y@GkC?1T|jiY9w^c+K6mrGeB0uBchG6_HbcMU1Y?yW^-FWW?usO-CkWS} z&I|=!5`l7yQ|(_LECuO9KG1c8YMZ9~c?u!QOTmVGvCHZ|iBfR|l;|D7B}Z!Eed2h* zmO-Hjiy2Jj3W84^C<Uj6v~$Nl_aFB<RMT_H39$R?qCY-k{%D>V6Fel{C=AJRPCs|} z!XQM3)zh&<0&ehb6{vFVMSA~ocL?YvAD<vDm2(zq;`;RR?S>X@K=>wWkJ~>;&91lM z*j_%+^FFa8>te64<bO`$+rB*j%Amx=a2C$DACXw<H@bDr%qR<WlUoj|;^_=FaDs$o zqBS;7LE`7^4vv{uGE$u3iY5MnTga0{h`eIY7D2v<(`imUNdXo2E~3*OaXLyF@vXx4 zyTIdIq)qRWaiuM|shLZV$}gRqy~R#!;`mX8T)bsH(LM{s!TnAVoZw4Qte+Awq%3Sl zJDzyD=p5@3zXD1Kau}iK@5vr?F&Z);=!!vUiq-$o86eJS?%*l0@2H^96gZ^2ty~7^ z4}K^ygAUB#okopBY@M^Q#6b9RRI7@?Y7;1Nd3W#_u?aGxlh9bLJ9u9k?+!G?Rl9;p zgGAtrn$mdbn1+B=Q&f7%*)z{gq#btx!<rvz&2~?FAA`-cbq0gZ-FvEdd(7KhR16ZC z;`q=3F9--mWTM{7>ISaRiofTP0N2YdwgVeNw{*4zE7;1bL`iT85;qDJA%lmI0AA8r zMGRYry*&GuHj|h-mZdCgDG4uHUd&4Ty%XA7T0Vkx?uF;4BbdHGLMopIx0WzU^v+1L z6Kn7akP~kE;@M<tO+=!*L9-jm_#RM&$`@s^eB_KpI)NcIq<y$d9gsUxTh5@^XgR<x zpvnf}%P+{>AdCPHyc}%NBM8>WW#jwx22;`#VL*Lk%g&?=B1?BK1G{nIkT&Kf8fNhL zABNG(tQ<&pKs&W7#Fgcs(X)<42i%kQT{`GQ5$vFSOb^69*}@crgLDP76nRMY$}fAQ zq>*ha7<0eu2PNdy{S5Ml_vi(uic0{h-IdJnu?2Epi@lttXcHLonO2Osmz*yIQFbH> zD2ok>)Q)36fh$73Xahqw++ZRNh<pPhCrkkwHsXXD$^awF8%jg9?%>1?btBxqr2R8B z9GYD@IOF;K8$2;bzM(=d;!-AT2FwB;Y{y=Mcw8hAX?z6A1qYA<+$oNn#Hwc%r-}53 znAsYE=e9`JO+xu7o9Bnp*p)}U!cO76{D+DOr*#BboJo9>aIp=WFbf4_@GU|UNA>2e z=?)#f8iX_RAH31dgN^$m@)ODCPD>m~sz?Y5a}a7YeZPi<BFT+IwhPs#k;j9q(hhWj z2*oJ}RiMQ2VI<n0pMVUjh+d|USF+?hFIjt65zsm5pva&w{|GtKY&-@-7nXt|`wJ!J z_vjGZj$M2~R&zsuC*1SP%|ptxMOwk|NOHlY?ou3kVF~|qYM451@^DI<MUFm~iV3pE zs?G@u5}SrQe~}W9r6fR^_db(trQ(U{0nT5=$WK9OZPN5*QK4}TY*erkH{ztlEx``| zt)eW$A{|1)4LwaM2NNcu*s}S^yP^$qVU%M9RlcA@0@#I)^7Id;5OitLT-%&;u9vcf zYE<x07+}hyQI1qaa<rvhK+EK7i5%W1wK<mu+k8yq6Cjl;?P^ptJD`{@#D2hH9S$XN zd8TS~2Uz(!@1RO3OLmFl6Do)j-NC9-e430U3&R363r#R;6)VsS#k&NdCpzD4T&%?B zrYDw*bP#^SpLhe33+LcS3kt;Lu!3(`^TTsYcYw5$onWUxYGMH1BX(hAyYtRiN+9fK zhfY3H5r4}UI~brHy<~(*f0Pxl;VdqEcuq&K>W?vEDh2`jv+)aN{M~zY_QKyS?;ale z1HC;;IDf%Y*sh^2o|xssEZZyv(6J5rpm31Fq<(oBl#hVfU5w&IJ?~QQLC-6=)6EVO z+7i|sK>nT^8)&k=+@Is0Kixu18d$_9uT-b~t`saMbOf+8(Jg|X^2t)LWI!lFI^LpE zOtD;Sg2`Daz;MtFy|HPNs~NGC%T;IqXxC3Yp;cq22zjGB*eC~NDOZs+elUYm3L5(m zE`hRO2Q$invl5edpfm=#0zkOJTFb}yV2NG5KDIDn{Parr)deA{Zvn<U-yk%iTSLl0 zl|H0@G7!jEZkL7!s0AT10twtUroa&J?nIf`BJg*&gdU3__qd#5eqg>^HZX9gSWvK@ zp#VO9#05@AkWLvej)A%O*q^tTiDT&XZu6~H(EY38hb-9qSjX_*GVJ2wtz`<~v~pj} z%pI6zPH@RLBFpm!Lj9D5C+J03<87e81CD_{P<J8NW>Jew)|2r$^5egdHP+}5yjv*J zT5yI*7`90`{u-Q}XGMdvr6Ogn7D}uiD$~}Qm?c7=aJ*8NQ;qBt)2n=?Xf5fWk;QV( zT};`_C3Xcv+=&_<IDjjQ!kJq9DFZ{HrYQ;eAjz<RQ_9T(SyHZW-fDWlt>cGy;BrQt zK#Ndb!+`UNiJ{8$pw>v!FT5+GX)TpYCn+#p?0jaxggSxv4`WLrCMq7Hv8LDrvv*Cd z1iwrWptpVQVHt5kL}}jMY_#w_8N>=wjCJpX&h&9R;stm9fd`YxGw4Sf146>TS?7D6 zs2dwKWdU0(ST&d#U?v5?K`9KMCT1`9<j{9i|CK#-!u1=M?di~<v?3J646`?MkLSKz z!!xuk`42jB-&{Mre~Xlz$*i`GNj8*Ou!3tyfL#ZvM%_kvGJ)(gugkvV3FjgWRMfx( zWf}_O@c5;g!pO#a7T<}f)U{lcCxHl8=vV_UbKoqGkM2DHNh=R%Au#`js-}n?yQep% z4-ct2OW6(@Hwz7tM*b(=^$L$eg<c<)w3j-0_74RK!-SdbY+(ld#ZZ<p|0`L-;^2w# zV}2ro<_$c26cE8=ZZr&uEJWKPfSQ=K6&0OAPM2u+`R(a1rmJUISl}ICK<FvlZ2H79 z(T{z`X(ron`4+*BeV6YOa`H>;u|F)}jNQtBZXb`;PeZ7H>8#H?)wsD{6tj;Q5IwuM zUFE=8iH;LY?+~7^8+zyvYWQx|9w8+K7aWZ@k1oRtahJ_w{)3~Gr5xPcgD2Jv)1T&f z29yW*jXd9O$ZmMnK`|=IE=&OvRx~#b8>;^anxMBWH~0@Hcw#cmL)t5>XflH;q5d7y z+jM((2<jgSz`)$cg%M8j-qIZ`Np$SYbj}x+=o+Ss4tnBbcQ6w99{`|uZc_s>Ik;9* z^UiU;{8JlE53(qon+y!?Qx?=bu}W|6cAiUUh(mtZ#}{-0sPciLQ5ZEO9<`t()SF+B zs`z^}NgtyHUm_c7i6W-TP6wpq267mKNZ#S$^)}?)-LZkgNbb_>vrE|M3~IQh9nHdf zb~dMqEn7$8j0qp5OF-VpdsjGby93>%o%v+i<Gw?ev|S_8y{H{(1Kszk5y25={@=N% z>J;<QY-egD?28vX>pVDK!Gt2b&?=&`a!Ht;d$oYKEkTu+`M>MHpxy;THV9QCnOCTt ztB{QyPHf?9bf%5>*Qs0zg8sc%n3ok9VVp>4lvbPGCrd#UD&mUFM9)DOP&g;i>|<*Q zx5dXTIlL5zY`PGT$wA~f!$SUv^~FZK`xr4KxF(^0x`QPfg*%Jo3G2NjM8Pil`!9Yl zJwTj9<tJ(h<TaigwtntyCDahEnT$2XqYjfcst$=3$_^XayH;gd?ZRhE>*M3!qS`Y? z=m=DobqVwvZrCimM8VJ+sP3Qz7O*x-K?zyoV(F;%Lkvh54lG#BfPmrD8Ll9}Rq~F( zXpAQ&=DZdI8zrA0Qqa&kX24ZK+~Mk@D>Jc+j%f(-7-EHm)n3Ia&vS|jE_>cb$Y4(D zjy9v4<~D(@HL_`VV#Tn7DVA~9^IXJ)rD7MsG6#i5UIC~>PETy%UPR|~&so{=s0Cd? zwV!rs?4*xjyAv%vDg~iw5Fpx#_fpVMoVRobLKN&p+|jDspElDQk+$F#>-)n}j-z0k z1(3G6Xgt4;uN8F5I0Y`OQYyqL%`KLh-uSiLQ$ue?g1SZ_mI79+5^aAZw8&Wu<0FI` z@%LA#`c$&h7D>&->oDTtOSk|p=+G^KQ)p&Wi<;qcG6<#}JW#I42dGHySFj;PTDmb1 z3F97+G$LVmS-CI_;rx(|znEShI6*{rP*4gw9s?VPYG#0kn2^lN-MT}F<h&%%{${w7 zgl}6iBbIzPSRe914|}<UUCv20oYJ0Kw{13J4fmSWP^={^`tnaLVqi5LH+U{NBdWLA zWPyM0`hz0qMTuRY!G`<h5YQ`?@<tMnuZ7~0?ZW#*n7h=lzu8$PtP+3=y=C1l*(d_< zi~cx~v;*eoGkQ1X9-QxC4~KHVIq5_!xi@<eUuCsJs-7-p_unGksTI&i)BiaKHsG+K zNR|BSJuri@WDn?s!6`1`<&OMtceDynkGU!rsi{jjSRWf8$v2zpGGKio7qJ66oL&wL zi%k+uoTU^L$FiTW+S{RRN~*%c{<xt-NT4oGDvq*ohTSLiz<}^KaV&uH#u>xGrd`q! zrL%($!y!cbfeW>zVB!Ej3FHJ06_Hd}jK}ys?ejKP%IHV<UX1Qx3tk0{?mIrhje1WJ zHM<(bE;LAHT^TSy+9#2x18`a_(i)l|+$1jrRSgnlzT@bY0Ee71kY%AbK6-?SQs9=z zTp~&&a}}cl;*O_8U=>kMR{(^fV!U5Pt`GI&rb3=&V7fKIW5->N{?I+2(g2!-t%Gxq z5^9lc^hkBHM5QH;;2q=?-ND3vXjVvidmt?_NhiRVw(&cSZERIKZ&AvOkAA8D5dlKJ z!A9B|4GboK*oYRxKdvAzIJ2R-*OHV1YLyVoxy3y%Ez#)X=9Y%HrjPUL8EcX19}`7F zYXPBugZbGSv@Thg`%xdrP+sGsU0Q+_uoP?#2+7S3j$H><5_cKU6-4pPrL`e%SCD2< zn{$r9k;16q3jGT41N3*KYMH}E5}`u-=$Dw%n0)%W$^o_tkKM3E6WDU_Ur#wmk*wyP z1yyX5y=PPXV|F0(Tn{|arwsIuQBlDu_C;ci?%<*t$uK}jvDPc0J*<!_fS3h7o7+XL zC<9DxZ!MP6#}&;-_Wl8Ng(||Y^%{cq)w~=S&|Opb_W7`o#0sfPIneH)11mVUg@*m; z5Gy2IL`#r@FR7zEJhvjIinE4#s5Zd~ME$&NIbs63nT1Hpk}!WRI^*n89yF+gDdcW7 z-qCZ+;N2%N0nd_e<?+Oo_ni?gfqo^nSaG{~3L58*+?8{Z3vcLX{9lS9y;0rppheJv zTPedc_1yeVSCAYNprYAIKz2S7x0QiO=8MGe_{4BZ!bVBxh$O=*ra*kl3v+<+0qxi0 zR)fw((p5vb%^=QemfTt6)R;3Mc(z#$CQyN8=P0gUiC(SAq&86slFWCW7ishGxv#V& z)~DmPGywwm+>#?s4oy4?Cdz==BsqLIPb2VLW{8!HLy4Sn)pr#?!zrcUxT2Z9z%YYy z-;e$CCLIEBgqeM_0Ca0fIarbn&(y{$h6kL$vhOsW2wtI|a{bsSC($u+)1WwlvzI^l z@0YX2xI?nt;M;nC^DS=x6<h^TMGH4SOU7|If3fB~ku#dFoF;ml*pP6yp*G?vMqQKx zTU`Pjo60Ex>aeXi;^hfO;^kMc;>cghW|RQ(lO`mNyZD0f;qm75V8@>mNB3=H3<v4z z7ElTjYQ(;Y37Pid#;HDK;Pku9;Q`5XL+2Hy2lW%6Fg_Zl<(~GZCLiCe2E!0H7v1;G zyTZD2pqTs6kYmqdrJzTaisJ?=_UJ?1jHb|yxM=L`3h0Jj#k;UbREjbZrEI{~<Oxb5 zNZ12tD7h%5-t-7qo7z2la1S^gK(IT%fOp;%$kvkE1sEPcdeg%fwx*vOJ5avCjuL@# zV1RF7Zx1_#)+C2XMi(a_f0vBDk<_r~^(hBSq>NQ===DeW2+!HjR|;>l*sRH5;I2MH zI0vzGd@f+p^Ul$;?utR6M}AeRxag(}o1efHBm64z@VY0#S`F!-8Ugh?o`?-;Ym<XP z3FosVmdTVm@_QFC1yGCvBUm{086t&tx&&?zqC3bkL~N}m-FFveC!SFfmX!oXk|mhp z9TgsykCT=Z&f=b8deB7DSc0Mm%M!cLDt)(bU%d!{O#pw08ag%&co$>&SlAWxyGQdz z4;NeMe=rZXpLX#!EYcm!AR>DzdlFV+3mX%|9@PsKx6j=r>Z3(hkan<FJrbp=<FVBS z7Y*|6@6h3rziYA%?tt9)5KGS;U4WY;GQ73NhQYPyT=kAESYi(<w3{U+85sI~>OIKS zH;zk2{VCztV&3Z;hU5c<wdKo}%<;c0v03Y%aOfBete!BA+5J+fde|Ox9E-97Y0``Y zcU)gm3aYzG8c|`O@y*`k7_A7DqY1I{;T251<1@P%o~WlpG*dvI@<79bExZD@7QRTF zfj?q{5L<;Q50r}YeTTA`rB0CGL`ifCz0=7cvVP>ee&=S#ofp~z>yWm@)>SD1U7$rA z12^fd^xYb=^V6Glk&*zuQpelBaMIt_!sO$)+ffVYrhoX~>bfmVJTWP8%tz9?6OWaB zI0O?=et~oa1~||^2|vAMxbtY-lo-Sp4M5tG!Rik~`TW40E<pLgNd|@GYG)&q&M9_C zv1yE)6-{FkJ7uUO9*1}iH@ct{RMEW&Uck|%i$kaJ3hGC!ki_I5$AB=K*biiZ7~yS5 zkKqGpj2e-TzPile_$!0KM-9O=7Y$XQSQ)pI%)FKI^S#YHjt!7)NGNQ#km9focZM*o z%OUykPGF3XGkTCh37=&y5;sZ$@rBbV9q@od!H~Os6HtM}!U}Q2%06j4A#fUkF{ao& zQa1f=8a%kvoLLM~EZ8*7<X%!X6Q{5q6oJsM(va;<cw$;ma!(hN;u_+@ADRK!ZR5ON zyAb*?+LakZ0*u*Ub|iG!u0QUQg_db(wuEc|;sNysRfmHX+l7*)E0`<=1QhUMO-49~ zlab3S;5H(;iBEw1l6}DK<lu5~$|j-8f-%GNpeNZhHsO%ZkW9A{+3@EhofrobauFQ9 z(a(3%Rskip9oWIIpoRV&5Qboka%vq$96uKw$?Xg~S_`spJIu`J$2RqcX2A|pfDy)U z$g*LqSH5$Qk-1&q4Nf)-XFy0Ppu${2PtAk|C?Cwv4z!WuX#hLa(U7*rcz4fYMZUA! zBsIxf(aykaldIUOvt5|NSIWUt+ARQaK#srG6+Tc@lAX2y2`mX!G)^tL1d1DqNg@qX zD%di?p40eR>CRidj1#N)sM^Je`wlMgwnQR41^6G*9oV5f#d^DkgVCuxlWMn+X&nf} z_@KrRYPXL$76p$ppEP!vP+}FKvJVMah{%I!Yc04*1xv+&dyJREpkdiUF^QXLV=}wk zxV<cF;TtFmQ9cecC$duDXzvvGi@yIO_y&K*yH`f%<ZGrgE&7NJlMf8-CbDDC@x<1# ziI741dsjJU@$O#I>(`(_zZl9vx+-A75e$ZKPG~|sst!tsZL;_$%`G|bJB9=gQ~;wW zfwFj|D<sA^wA++vqa|f}d#7KS1*RGFam)?|<cnA$9+mTg1=0q%uw)b2)HXSZKk9J8 zL9m#IIIMS+ihaR}MuA=%XC}!CqKjCn2_a#jBosGFIJ^Q=>XzHfpV+mEa<5@wD5IMw z6>be}ehfs0u!FG1t413*&pMy308DL=xtwiz=o8)1&@<;Wp+LLdxKM)tWWs5PbTF#U zP>y{eF@xkAhsSsmLZ!-36YU<{lcHgAUBrbQVs@U&U)_N{j2O7&F+{;QsdQ!^kKTP& zU!b`i1<QfQF0J^F4tu#au~tt(OMKs@x`Kn!lczPth9S`)u}P+L5l4jSM&6OkAn6R= z6;PQt3}A3O@zNrF&UYADT8$Yc!ShC)me|EBb%z2kK`aNl5$&hxt@MQ7Neb^Zw^uOZ zrBf<A)CP`5bV)v?fF)p1w-om37RCrj(fv?nbPg~|d_02fT=ooL(O9+>;KLe`zv5lN zppYSp+F{6=K{-lEHjzE@j4htbXb(nL1gbT+gs+Ss`#ABIOU5bkMo%6G;jN{xCd|qZ z!q<?8ZJrMk3z2EwvG#QLPq;l9+)>K%H1@OmQQyN;3i6gxAUcC%jhsJj>HUKt{AqeH z1L9cVp17T~@T<$XA`h@kOrIO}5_E5d7nvWvER%YMzL@KW26XR=#+i}|w1u1;CE*FT z#D-?LN2Gg$BD2yZZHdx3RPkYYaETYXxM+0g?~`m7B91APiNg$b&P{9B)3zaVO0tWF z5k}(U<D>)a3aAa;)592TH#nSRds^3NOM*vPhLHu|#FZ61*rP+>1_6*ELKPnSV!>Zl zs}pVD9|1o&9YGh6VM`!m)vkd3#)=K(f<@9C0yxZ%=;3IZ=*b@ZqzGx*E{zVNLK9_l z0cEkUO|UzgNpZ6Hr|u6KnVW^Jnx-zM-8-B$T9eM8$!5WpMDJ@yG{d-C-Rfm@0|V;J z9oEsOH0<+ue}L`@pI8{Gt?B%Tle0(~s|cAJ3=*r#8_8I<W;h)3DBYT|dGYDp<5RPY z^ILF5iVTNf2K(0|4xlQX2R3iC`UHpE@d9;LH!CFakm$HVr5RZc3FTmm@j(**lc@v3 z5cp8(iZi@a>C=7rp=@dprZX4bXXWJ}GqHXP!3h%vIS5WMy2Mdkh6Ew7q!yy7y&Z!* zUa1<#X6py49FilTrc#6~bRceZFix|h@oV57%^etlfAaz_X@;{posrMSw|iV1JF;+* z80tF1b&(Nm-W71WFu0LS5zNB4hMg|n5;vDIL?kCGJa$tqIAB&g&g;>z?%hJ!tmWgK zx|n8CW7C*(NE!#o$hpaY&}=xs?$j6&XXy+*=q9<k;!(spIt7dB?G&n6NLdSV%!*g| zn)om<r6e@jF0|Y62o|YNtQnTr9^u}+mpH|ZuxRig&&BxEEZGO?Gs4dc>2s-)6O<=K zg|rq(LOejHFei3DBXpBzkC8=Z>i}jBy}kEvK+2EQ6>cpJ+>@3=S84r8lM>KBW(WOK z4s^@Vd{-z=`@?I-x!m6uwHv|3FoP`iYe^=L0p|q&0X@)ABr~d)fh`=lZ2)p=+$~xl zb)PD3auYIHPqfmA6Wy1yMIN`LJWgm5f^{|u9n(aMAF%SrJ~?wEN%!<3OlG(!&MY_r z!xi#{9Xzg&^m@^x48$se!$K?^n{$<(m>#C^ldSQvd(f2oPnWzE^4m73@^mOIvYMH= zyvqoUaW=5(90w4jtg_K*a>FGqcOg@X94pc5VOh6O4Qv1knm+04IYh|U_8`S6KYdGg z_2Lr~MGEu710PNd38eZee7FNTd`Y%};I%;Wyd;P(0q)tpOdPT4e`4LA1=NSF=|H!Q zX4rZY@*anlg8m^Pq)$1h5%g4<3fnGb;&W#<x1XDGG(Nf}<sKC63dWt~3=2NH)R!H! zoV*ta8@A=XN{>?z`7G89?~~0Tq2ePflV=3K!fdC7U}KL+t90UIgkl>qxKRp<zmDc6 z(XlW*ak~TE0BXiSoclm1Bk_VYov8fS6p;WVR2vG8m0A%G)hye{7VzP+%xC){mk=rm zAwlp*lmHtdNKzQwNX`%KnV7vDzVjN5?!#2jkfsMMz?fHuXlxo6y2Z}uLktJQNE-w) z%~if3;&N|MV4_GRU5ezNc-9*o!ZZ~0Tob;t(2^iG`kFq<#C$Cbp71;oe37`~0G?DN z`Bay#fC8R~I01;@sNRtHlX)#0g9=>Li>!ZI@gmZJD(<$FG$!c|-2X&v*3;$T9xP?j zkP143u2zj|uU@1J7~;=e#X0Q@AG&qPlt?yIx@{HzT;k2>oaZ0)?|Nd0Msk!`XKH+# z+pbr!R3q2E6Dz2~OG3iUrt-nA+$h>GHtXVjXdq09*!H7nMt3k6#FzmzY+wZ|G7~^V zemt#la?0q2L3Sw(p69%!E1;kuL&)Gj!wwe(ezU`hLuyJFM}<WvmLb4`m^GgRi4dqn zFS{jTq0RweOD59@qlYBuaO>`Qa<1CfDmEiL`Bb)Uz>2LD5+;Y~LT!UWrl>h#21g%< z_nEvi&bbM3eMwU@y~!&vAx{xAZvqbKvyDtKbu=Tjn16XBHw1Jzv=s2p-=z%bpBa(T zWU~<YXV2Y!ug^NK#5Yev(Os8crsD=rBsKOZ1r5Qj1xxpo#Y#D2SfFNsrUzaM#MHns z1C8_>f*Vwa5ue~2%^(#|`xW0F<-E<y^3ct`5%pzerz1UH8=ShTYUUl@s2c;pDnd}U zckl7MCHLf}c{P5G4ND51_BMppNj&y#5&8<QC)W(;G`G01pHrQp9MD<)3<v`>#etK2 z&<Lz92ieQ@W;L^m!XWWDrP&|kE%lH`a|JPG{Qc@*z+ocJA$^=#x5%PVODc)V5!?LS zh6hv98V5!;^t9F9`uD}<lE7qL@2@jTgi0K$(Ue^%^%+$xUZ~N)LgeKY7y^nO)h$af zBviPscr;3t{RRY8X1_q7p@y>}Nt4z3Ro4ubDe;fl3CNF&2rq0vF@h~+03NDvC1EH2 z1ffSuL6vnLgbV|WU1xJoUo<}Ip?pWQVRRwnk!tv|xjUL=(>x)btTHIfxHo%eumt^+ zP*>{;#7miE;t5b;nEu)odIe$Yv&Lp6yxh?xc^2ykuT+|-P@y@q<gOT1%hT4ZGl1{f z20YeHb?1eg2I;-Wm3`)7njcn>ygIfC9l438D;N==_Wt0G8~?OH;&FWOh@6lE--tJI zlaOT_NjxE|TzblilH>yfLvvfema74XfV(26k61%Etyw3G_H(;1PPbn>*H>bMfisn> zP!lmkC*)%QQa)c_Fm>LDq#DOcIth+A#pEpu`q{nVu~GmmA(Nco{te*nxgMeYL~_y! zbt0Dp64(4(c%!!x|Gw!5^`Zl#rY~k`ffp3V3YIW_hR6hTXecr~wCf?Zgk8Y8apfU8 zcHsWzCG0FAKQ~^%ui(}cokCsV#F7Z=F%h;P0@AmP<-;pb(ZUcr<@~`F7QIrdY#4he z57A!ORta!o7Sl7RIG>yA$ZexUfiPfxS0^{wNiXhm@c7Z+427eOwCy+i?X5u|bxuAq zuOBBJaMdtCEjl;#5?JHRG4`MD8Nd?W+bFTc0R}TiIVLhV&;V^DQyj^AJY50HfDQ=k z5H@7dZ&^5~C&m}zlRML@vEhDO<mk6RDyXFLlF(cgeZKE36S>dghRxI2w;MzlZ`N$2 zSyRmK!FU*F!D>f)iE~r=*t?W4fsp=%mJN@!2gC5h)I*Pun_vTKdkRlOzxg}ySUi#_ zVLV~$=nNLbQs*?MSS*4P{P?8lGJ!7k0xc{E{Bv{%$J@}t8K2u|Xni(qN&{}eXm-OY zrc^lbKsSxJCNASdX2$m*i*@%uA&%I@M771H;G6R41j3;<>|FqaDs)7Y2-FQz=RpL- z1X-XNfKoLdzQ+GFdvr)1*fPXa#a^4osfoUAlqqAvE0rf)-<>?%4#~O#q+}UZP;krv zfDfGHLq#g+3b>ifr&JhLFhDvOGQ#x{{G_peGn^+k4rdLasVxvi`8mnqu6W+=DN^d} zAjA`RW0Cf|%Aw;fqs#ZTYb*Jj-z(n~L<bb|jCi3*@)L=L=vB^u;0(hlu1#5rla_)e zJJRebtVbQ+&Te!yaXlXQLco0r#*cE1AD2P<>Y+z+;}7u04oa(UQd*d;m=_tf#8VcE zT^=K{6KP~z0YKCOfq%_$<lR(gN*U;vtw2~3Qp3L(b-_DaaXitxMY3Yr6sH<QoDbS- zHwqV)WOv;t=kJWxDxY^kAM=ANR-q))@@4=-!los0*D)BTP~>;5GNypheQ^$2Xq%AD zYQCTgOa@O}0M^J995=Maj@XSi6W*PI)P<5nAjYnMSOH5wi5L0(yIuer&KhY8w81*{ z0;Hx+V4?n8!$e;w6_rvx;sGfp2=AaFp`iQ9EF!P=jb!=&4lVT5bYSF$a&7TtTaZ&H zy0(gabm^Z&b}WiO88~f-TfHP0LF_K#$|}sLE=4NKpwLkYiu0<U5G)Kl)_K(<1|@&^ z1^L51Oe_VULtNijV)f8$TOA$-*rOtH=W$k{cLiU?(2&mHTOKOwNj2+AjW`@?G^7}Q zim%fEU?UdO!zF5$VS!gBtr-{agKz+&(Cjhr03J9Epq<kplylIeLuj&Cbm*f;MZ3aR zI7H%C@kMj8@|YV=@!B65WBXka=L#wo+l^JcJ9u2yIIEbbR`*i!RCaevA0I~9Mh0u5 zo5YN8tFlDSh-E<Q@q+sdaMIQWn*I?EG`)tj@stUi;>n=_8_a`AHUJJ25e;LA@F_*c z^8lJbMFjnp=EMPHTd|U;Ax0Q7E$%I*0GB!Vkv^*MMqRT++XGK)HYmA5V&#BCh7l~E zIMUh4)d6kjV4z+PO*|bM<c(Bgo>E|2#_SB`E<=I(A2#<p1W&0-^1=w*(ecLtH{>lT z_Qiko$L{X)4?b{{!C-%|f+D4$@rT$?j}871_^^Gth8hC{7H#H#l9mLo>~Lo7aP@6V zKF1hS3Wf!q;*Jt{1PfU-OB5??d1mXwH)ynB?-3C0W{Hu!?k20<j73j5n7D>aa}Bd0 zMI}6TX-Ed#l<A{Ikju`bEHbC6NpP#t7_Ahn(0zIKH_E}`6~M+PoFtmm+7&nW4m7Y+ z&@epF-9X)e$)RB(-*l;nZ|=YhI^)}>pKM!0bo?L^72aQ?ub@KE1c0fqV|x-TN<kI> zwG@K@6%w<>$@Oq~v>&K1k2m_<O$-_l!D(aC%vmgA=>j#4Q~gB7?2==y13~+25a!1! zwv#c1{A$Myj5T%McJBy=2$Pra4hsF*iWsP-s267|3Dd~lAz#blVZi(yDur5>E?^0M zpfF;W?`hf<6qy+E$8W5Ca?YA`4$UchPY@3P+Opvl(<NioW%-D;CvsaKJ0n;G(QUsA zV0oD)uFsOO3syk9(F0o4<1hu@2&LwG6#VvaJYfp`3`@X-e)OfqU?SaU7m3jPPu2*} zWkQC#dW0Jh@t}*)sU{$zhfb2QNM5lFYB;GCUBW336D0uyLr>@mItN2s0|VlH&u6N# znM670!D@yY0$NB$yi*?C5f(j@s3HJ1kO*ZrbR{RO515dnCvhnS%LAOC&!_?wk$uyM zwPmvg#)QbY$&-xD6npr%J?<bc45%mrGV@3$5Z_nHwWy-V<d$(l#9$%E1_O-ybi2pF zCa)mNCXyXO4Hk1n@Wf(9LJPdWz&g(VOIU_On1(tSROt+OSPKV)Cf<hSBLou9^6}e} z5LQSfQW}#4f{{Ys;N91Gp~(#l-NCU4w(~=${TACsk9?qC+l<Y^O!7>evRGmhIkdlL zmyp8KVI<^;kg40zZYGTQ+6izi!47K5u;i@gO2gF^AuJmlC3w4=ZAX!}R+HB%Q-fi> zp6_^aMlHKNeXAlTPdL>Ri!+X84eO_lZ=me4Beb;>CrBcjrVN&)pkvygh+$y5AO~^~ zD@eY6U|D$l<gO}>f5mjc{pZFB#@ET1nuDbv2eXp$i8+EK$$sAJ45yOmM5rg6n#PqX zcgre@*u6~gc%Tu)BH=*jiBvcj0~$hqyv0!gC;bf~u~wl91yM9h74GsLy3WO75r|}A z!CF5y0<HuQ9kDMEhfs|gtOooq>$P&Qv(oMbW1pXM)i|N|Pf`}B5S4P9A>{y+dOq3! zIe|9x3nRUE2gP|vZijR^tfT)A|C1u^!Z)>X-M$5*x%D2U_mA6zVNK=MCEyENDUjSZ z*GD$@W(IqiTZAFO&k4&!268lUQCBOe#x;b*j*<FJeNKx+!g#TJU<dv13YvYv+Xqq@ zw;lU4O$-ng@UDy+G{%<;YC`}3%Tq7Lee}=Qc#0E%2$qGx6&|$IBs1~O&wn&lj46J~ z!KT8V!={XZK7_x<DLgs$8I#_RJB;E{2F{r8E>6C_)Lll7U52kbwRD)*!{Y_W{T`7k z<HLfrW0ze!$%SAZK4G;$-cgb86%vv&auT2s%s0F0xgxuN`Ib*vFlrglQZR@;>b9|Z z8xb9Lkq+VOD&R^Y0CHzoC}M|1cUEEr=;MeR^aANk9dR!{!$OTDdN(|%lDneMB<lvD zTvJ1=AS8)_<_Bymdc#&>;+Da?9pma!cU59A57j{-i3J<`6E{5|=|H(kBf@D20VUWY z<pnSI&16RI(R17qPNWjdRvBDVcW?@NMJZ@mhQ#6^f_2oz@BHDBf`Otn-y}R<7pR_U z02D}S;=Ort+CZrw%ox2rU_)9p&KWg?J&N}wE7((m(8pj?!=V7}1NVSa$k~ofE?EGy zpg>2vP+}+Q&PM4|CZ<4$=b6BncEb4K3YOSzhjgH#!!pcbhqUNdkOf3YLOd4J1D1-G zA#Ts&7JV?K8NR4)XqGQGquY3>eF(~vr9fHARi+G$G5F#J^*f;#@fe=r7Va?)aA-Y8 zpS!Q+!-A>sDr3t>u*QyPp$UGFKaOZou%0_%p$o=1Wv1EjYs?b3W4FovdEY{#sDi|k zyE_}RZ?TUMJh%bE@SFbQs|Ss6cVz?;Ks{7pM=5YO;Ken>j_gcLXs`G@)$qVnuGirk z6gXp7_^s6?J}3!C9=DIK8c9qTy<tG$s-bthb=A=bJGJwpvljaEuySE%htMDgglodU z(H~?_VVIo6AQ$8Vos=5<Z#$t3Y^PS)U_gR`8a^+xYBav|kj_Bb3YBO1GI5Ik<HA;j z&F;XjB_@$>5}&Xeb5oVbSbRKFg-Po!W<czcmjgN+S*S$l5{i_93on?T&Op_QTPR3g z3ifCFC{sjBpd}`O<m)H#q_Hblw_1oP+gVdxFc3I=NWtA^3rg?+0i|>faI?e_^dlEp zhR^wPZyd9%7_wjo_3~Pda$pWm&-=8GGG@bAv_afnhL7^0PE3~|isdr!lc^I%_V`#k z_B;GiGhO+aEVclpvZj_K+ME@B9&k(xkI*EQzrhNLX}A@Df3JcCP!<hxm_vrcxl50| zWnhUl95x0(w;ij9!HVC5=ma<s42Om0e~Qi;A@f7Ik2Q7}BfApI7!K~1u|qYqdgw4# zi4CO0!w?pDB4us`hx$u&y2^u=0%pz3;mR?qrCnf<0jIPA?(~ilP@+3{oO_gaq_bz~ z5Zpoyisx$9d)9SNO0?4LDk2`JcQEqTyf_AiC-6nV7(F0u2urzrq{A^JJfU)yc6^GX zZ%$#iz{pTShv3jYK|sLBQYto$II+HHq)Y4gxlzK3XW|sZ@d<QQ;iW2`?}P?ZL#zS1 zYL0z5yCozbc|^+Ek<)~+2KWj7hXtkc5;?`*k*Pv+bcX*HD+vxbL}EvcX`-gc)Fk#; zVRy+4jgz8PbL8+g9J)S*3yQ&831OAv+(ysl&Utj#%pd+^7IxW;^+d<Iq7#IfST%56 z$u4_<w9r$yKeN@~U}+Mq795HpZV4n{J8_{4HK4`!nWRG61{Y(`4_2^*eONwulNH%j zT{rgV4hB~L9jNFw4YsKmVRr()!Q&(YcQXQIF}IJRxxxtyMns#Gqe*koC21yIAjAEK z9bpf4qHCJ`=*#5L?)wV=K@8wj?rj|qRL4{TZ`71V+9>;0Vfs$&u`l$v*HjqW(IfO| z(ZNQ9hRKs*@sKcu_D2cON4;qjGkcYL+|}uQ3p3Z+h^nhIk}7g>cULnj3NZuv6Z-cp ziFc<4K_gQl7%Y~I85!|wM4X4)0!v~egTS~L$}J|2!(L|oQ0Ch^L%`7X?~~nDl!nUC zjow3D=0Uz_j$6jxK{(Y21x;x$c#7SJO}YUR68xK`^_V&M)CP2;QjHQKN`jUyo9I5h zUsh~5@sE!vD}~Raw-DMPq(7L4TQt{$bY3*PECmTyZ^z<w+W_GvXSo0?s1PW4mdgI* zFo^=XLfqetnrD+M)tY&I%!${>#$?8=;@T_>YMRDpYPc;-zxpOWOCGS0VKvbAA08-Z zAy$s)Q2Mg9d=Zkd^P+HJVL{fS9MB)MGrM<U(O5hi?)l9>(vnaFKlm;g`<K0Jy+=-_ zit&9{r<o)wT27Ialwg=12`@l7-Cd>lW;QYvnWG3%GYQFu>~t_#{10?er!_t8Z_^CR zA8r`(RzK<r#REoLx0?`Hh-3e`Zn*DZ|GT+#Mw`%<KtFJ+DWtxxs5Km{`UdvsoD$#z z+zZmV2}q~?xka%ecF@SIqsn3DP*gc7VM1b(K9m707SE{ST|pKFCQaXUv8btY#pTqt zX`&0X;`Rq*VG0`%jbTgG<F@We4fe1!*n&{?%HWkQ$qQXp4iyP>Te1=g?OaOOMsu;~ zenKfKKBJYc6MtDD)sMNs_*fzZF~K<aO;x>F4qpD017ZhNh6R>`xP?5iZA=az*s#Ej zTm5lLa3|-W2}wDt6HEU<heN7Y|7;k3krP_@JvL)Ooq2Dzz}hM-Trx))_V{EQlH=&S zq$Y%f1up}xCnjd0?b)nvC-u1Wd5>V!dBoocGlZ<!D<v?cw*|EpBE@t;yp5T6MVzok zjR~!W$V@CL08VngbE7*@jof9A<zl-k`Uzx$faQuEMhDo?Mob+Z9)5*_F&YLoEuAt7 zY#wo%gF!^0Lol45aB6~eiw+8xSW2;iE;c5K>}AZj6=TbQew1lrwS`I5%E*Kmp5OEs zj<_U}xr;T@{_SOO%;N!a?}o0RmXKq)dU-}?;KP8Xnso6saI@lXyPyJw`RNQ6{7;G| zpQeuiQHrz$B?vAF$tum;Ph2NSriLYG*7EQbw-=xAWOFrR0^;Ww;`i>~KI?{$x=K7% zpJ)@3J3*hfd5-|IIR|IFRyh(;Pb#0;95KL&YX)kZio`JkT20Nv)U2))U<FKG$Rmz> z8D2kpa9~th)*O+}z?v2t$OgrO%hTWmLdv+~O3CjIk2BlpwAjFTq>O@4p%YA3Y#OTl z8*BV{-2I4)%)a#~3w1|tLZ6(Y%V-<|a*!s6xIFt<UvF=BPodt_T(ca^&nDqZK32eC zcq;YdY4oeat+Zo-$^%JDx@w-)$Lwu2Pi}Z<XB6^94g*V~+&@yKiuAF`Jan2L<}Gnk zqB-z)FMZgDO*IJP6P~UR;+B8-B`1WF0K7iZ&uv5`MhC8LMzFx1A+5l$@Z8!Zy_kmc zkgN$JZVy9NE*aa=G)+lZP_qMdRhN(6DFmMI1gmm{3v@%@x`9uV^+Jah4&pf7$UzXh zBZfL*wdp|$X-KY0b&Jn;7JNL3Vb?Ih=ei+p&t|pc#_kc#;Q+Q+3b=_};$tx)wwtHi zLr50>lTL#AkYkQ(ftF(4dd^Tl5QA!gPd*+7UZ?CVmJE#f=fWqIKv}5En4l}pk6eOb z@{17|5<t&@38)h-JkE!L75~VOe*c)N)Q^2*VJU#3xq-aTJ$as90`0m0Gh~{x`f2=3 znb@NF7jc4N1dLf462_R2OKWYb*=xJA6YnomI)m|9B=!&SxRYY^Whyrz9yIwo6*5H0 z5U-Ce58XD_8@QWH2@<2K>S?e;h6F@^I4!Zs)eC*k#K{K*$xIIz`Qk;1CtDQHT^We| z;vhUhR}^mJ*<V1jzlG-7hX*a#5wQCFIKq2QYmVqgD68z)GaCUn_>_HcIFe5r4pNi? zPhP`pNXlaBp1EQTK*4E#Z|J3nypa<Z^-V=+&-=qgsh-&P7}JC14(8w*kn+0MR_p{g z-Z}P2jImZJ30)koO4O1<Jg$V0+rs0ZGNjgmM}3JG3hmXVI6RThbnF+rBk1DtoUSzb z`(qOygP~o4$&pUCSY@m&IW}={xIOP&hmYzzC>+P0%Lz@x7O`fays>HS3KY;4p<vbt z&f6BbRB<j^ACogZ#m+XYe{he!R!HB@LCZ$@rkM;mT<Tb=nZ^+8ilR|8*GoLN(jN+E z!45V<pp2kwu~SMu@FJDunH3pb)Saa$ds(N8go0xRn&-mXz?kS9&SaD7qC)iPbka!r zbZLmV&=oL@F*^on{wGKwKhR-@0xzK?_~+Z>m#m&3OaOb1$6hG(AM706h&Cfzq+)bq zFjfmWWI;l%?=LcZ8aQb*z2LUAoq|_4g8#m5$iipKvhyMwPi=k*6wIs!xZ^~hHmeK( zBj^IIXWAlo$c%~k4hHEDQxz=%S{4>HO`$zF*F)`&v+{)t8k#Z9PF+5jf!S$2?p2U! zd9*~*Sj4{ocRcS9HZ}?y?s=uh3+CaIvgW+95ymfd;&W>cx)6`s$Kc>wORA7qY83*{ z5baX?#2Pfw^{^ZmsP%+zWBI6>vtZF&J0ywMO<oS32whnrTIlM=lEvSBUsOeb4U=$^ zs^A9Q-C4~ehXR-qRGP}&D8+&`2}!Wv=|TzNre};<T8<D}YVf4La>iN#90Sr46E;c- zd8~V58;Kf3V;S?!E%z-W+xpU;4M3PR#nYj~Z>g9ig{8POcUH-nSsDEGR2mBwytk`` zwuC*9tA<`B!T7CrK`7cS;O?|mo77Ziu}$l7V|TJ~2}Po#gO#vhm!P;E@StxHnuNuP z_P_@Rmp4kfH0f2<x<mVw7E;IT(m$`oU=#$n<;S?}gg&RAzz%BAjr?mgNUvd$bO`FR z2O*_QSuBo^Olf>NgiDU3CEzz6a2q7nk2eZ?d$=Invc>uHdvNG?l)*HCzs)-&*Vf`# zVywVLu)tw~$W}%e;R#jeYN3*gGzG!vA8&USsuENQ=P7ySdy_19OdBi*V~0^bd^0J$ zeB4%`;4IYa`G00^hHGU-Z%<zX6C@Utg2kK=G7Et<5@*aEB&X%Ahm{IzODuYL_ux-^ z)=rId%Z)>tQ}DVrJRy&yf((v{ZKQkMr$8!J3meA;A(eEQhCLQ^%bCp!LT<P5r_HPw z&}kJ*&q2g*i~!>XMaoMy1vEJrG6T>X#Wx6327`L*4=%i5d?3SLeg%*qCG0Rr#z@$- zF<z)6{$gY2u}#!`<c)?4lt^;%43#28g!NH6L-u&u@{VXj$B0^3xl|2I8=uZ#JF)P& z?Tx<Lr7pli`}tiq8hy8RltRD%77;D9k03~f2Dpn`3VF_gCDwbn*u@9MC5^mo6rLSW z5f3k`f{%pENOx;hnNpLkz$r%gBW)DAL}!!(8su(9cXmO-B=Ah5RQp%l%n=}GEFh+= z)reGD%|EwcVIXv4R~+*tPU;<?0)Pl#I!^TY&G}1@tz9rlkgQJcB&0anMlyR5veQh# zW#U!^p*>TPKTuqq9)YDQo}q!eOsn4v|3VWpaXnNdY}XO464~S@-ja?1N`QO#(PkYi zW+x3UQ9@4%eHt1m+XFImg7LQ$RPihLZHE4Y_bH|ZVnzw<)1E?B&*^ky8T$?i7Vi!m zDI?U0zJ?x^!YD{mjix-TR6O>s4AChuRSje~`WiY3d4EEYuUwV-#{i(60*MP*=D?y| zLH68(xZe(OK-1{MZwl%*>5bjxs)%lDh!u#<y27~x1H53XVw=ViJfw<H?9RZabo;uG zB9@LBUBOHr4pRA`pCAz;_w78pZEz4b+m9!jb_~$DNA^LohUZ`hZq;5TO$knM=b1py zWFx%D7l|48aFApz!SKOs@$O+PQzWyvcyNFZmkASzM$4W+JqBA<pjlH~H!F-)G7(RT zGKbL7GVEN=3kUtZr)7P8KtZi}Uo+m5Rs&^`Mi?C`XXgobSq2pGD)^R%suUv?DwK~T zsR+w(eS8ZRV;$(82=p_<9KX|{vxn)<gn4nn>T{zM<i@nuB6i7LvQ}sC4BQK4JJ-O3 z41G&yu*BwQMXFlUeQ}m@;1r|wx!d>u!Ya9bwvmOcMU@{=(H)4(;I+A5cLv&YDW9DK zN39A9QX3z^LcPQbp3-)785tA!goN?EdDkg9OnQ@Ve~d7doZ&5OsVXo?iUmnu9_NtZ zhfn9uhk6tf%i%>$)1zU|IePEOG)J5rtjz52z~jvAwUJE)o1=uRs`CQ@E57$&gfBR4 zF-_ZLMD!&+l@n+X6+%n$A7Q&jV{7DL<C#EM+3{9-@DqC$MqL1`;iOhA4b+~=TU=^( zq&KKFO&E4L0tPE6os(3w0y59+VuHA3fvCChP09m@1z#r4SSVgf#2k^3jwNg<2TQ}A zz;Vpr!>Z=3a~VAXb6Pl<@P~X1a|DmRjvyWTfY7B(CV9Q0bFei;K@exokw%}%PHq7o zwn*X&S<<gCh4t||VeAP*ITSzWG9Y-1pddpQ3a~l^w2ug=Va%ttZ}m@iutcm-#REm@ z@?=bvEt^JA5l<-~l$ZrOsDci5-zq#Y9DG5BD&IU~4M7?8megQVtl~nNSbtYr7TO>{ zY2%KlX6h7{k&unOyy&IeWZh7Oh)~>J-AVxPgp?TM+EF7w?#k@r0UOSO6$J+bP{miA z?8l6kAkN;@imJOLgXOWQ?U0vOi0M3{+RdqIWM;aH&oJoB(Q}M86%wX%#TKk9m%524 zO@Pe8>>Gn?!*DVa9XycEz-!7Dbt16Fi^;rUg|zHSv^HwpG36J%6?5~dk%Z%eBo-d0 z&Sqg6dS}2zBZq@3K8Ta@M*O3<5nfBYbCXzT=diYM^U?h23NBUi_+xokKacz^1==bk zsU7)tMe~rOAuGPlV51UdqC~?pm@%ih*|Jy^!yVZ&JOLhL1dycY4o*4PFihkOph1mG z?tuP<{!wJs-*2;b2X+h&|0JxhcA!|pmhH|&oE10vi4sx5Bz-4f1#`N2s-55|ok7Eq zPj0ImJHde<*OWc**>2t?mWByp${oxG(|$1xcES*Tu`56c>>YIYz)h@h%}9?L(32h+ z%76)N!)}6i!C?zA+o6|OtYuhuj1{E9H$&vW9W-pdx`O_>`&apRQ;(kCq+_uwxjF@k zk~srr&r3LG#}<Wf#v?}Eo2;giKw|KmYSoQZOx~Drb>``e<mir?3<@$Z_%>m&6o8uO zVkou9T48JAK_x{7hD{J={b6db{s>hVpV+0$WumSc>IYcJcisx^etgqFA;Z)ll8N~^ zhp%6ylW&Txg5n6L6!>a^cep0yActt74Y5<sBBr7;(K~|qkyosbcaoNa<y7d$a3S&0 zr854#tPA7a8)8(adqUa)Y+xJCB`RkO38@HlNYW4PO}hnA85$=H2w(*zZW;US53{q> z7I-hs<>15P7$PSwfY&y%qUUeh!z$0DK^s``tgRHBs<p5e2ZN5-(z%*(xo6-9n=Xsk zs+_0pY0)%4>>@H8;%it1R?MCf`$T<+4P(@hDWOlQOw0ixo+%>@xgJIglq?GadRpg; zrXVNJ!I&6BZd|?WWMhq0W#Hlr424AGmka8dOP<DF!!55giQOuaOi-_3;SN*a<lqy; z{zNW~j}KxAUP0I<x9cx`(fG9rp5?MgdVJ;J7GX`ggD!cIHFyT@uHID0AS{oA9bokD z&~!DJCiWcfnB=cKx3R&v^CUg9sRuDx@q>|}h5$p?Jh+Fnn$YOi>U;tlvQ3x4j4w-M z@Yf>ROFQN&XVfs34p^X~ov+Mv#$RND2m@FFUhq>#w&RWV_3ei7Pt?y8wbYp|Ai}lk zR&=K=<MF7Cx={vDVy{C2M;06HlNSiuO{;+uRGYv~lXGeVPcPlhJj_W#6+FO&W{HEa zVG-`pmijSnBC>N1#QJomV0524>sV6%*!7c`(SnFv(bEjplWl5Dg9ewRtEG<|34hNA z?M%)xu>yZR6UB;9&LZwt86;D8ofwjLTqT25T7}ycZT*qh-Y$N@^E;8TUl!{WyhMCi z4-X-9P|qzU?7~CZfZi#rYhspIuAqe{_((&_L384PjkpE4wJ4l@V94sv)<4m*U%BHH zsfGGEyuE#gq-0x`&S^DyvCZk1_uKGzU+=w~!HbXckrsVmh!?;VJuUR`J2IY~pkQ<( z>k8J!HXpRb)KCg+a5$L|K2_jE4=iC{UyJjrbS!;395iZ)d(lDouov6#pW;I8T+s~# zumuO(PLmnbiVPs;?cF#eAUpC52gSN2v-BJ*jL+Rr6@Dikh_<B^r0`cg<OI?XSq^@6 z2U-$VEElJ#IW7KU<&dGRe(%a>3x-D#Hn)5D(FJ<jBJ3<wGu4MBN`m_y(z{?v2VwCk zW_oa1gdNb>*%5c)8D#MuZo&+q`rEO@d}pgDsNfxg4iN3jUao&o6;Te#_E2c!;wK3r z+(<{F+t-!Wh{(e=Ff0tAA!Si8E;#o1AE<DqfFGUnguIiTK?51A6YbjM73ALw#9w|W znhjB|LiTv4cnVGrqs#*%0<7XyT)MCEtPE7xSEeS33xEbQp}`j8z1u5eKj;}O9azEc zp2omh65Rn}A4c$&oGaTZ9X8n1VIy!@F3`-rS7ybi+c(IAkd$}c;3^z@Hh!Jf;s+KU z{}vm_gM#7R>*QH8&&wHvSsc?xln5Oh=8}x2Mr*b9X&J~$E_Yxw$;bpF>T-KrQ-~~X zW)t4R5$hNVDw!gz4p4}(Hmsm^Sr{(q4vM_cRX%ok%}yLMz?NFW1Es@M#{=acZl^k; zsS3P`9?(@GMJ9=S4-UV0=1t{|?NbKkXVs7$Qgmq!F@x#S;QdE>a*u2g?+)+-DPclq z@Z567^%)i#phU1<4&nt!u_xCpJom9rvN4dQkQyPl_%bWtFauvCJ+XnXPIT+g=OuZd za$nfsZMccz!9bPER+IsQ0l?LnUGRd1t{}rJ6+ET0n^2At`ABd;vteP_z5Cp&27oEz z0KJKu#>P#nNzcl#I7}El`A*DA0gd2W354d<lN?0bogCb?bHj7i(SmxWN)d<j83_zD zO`J$_9NXjCEIyTaDsxCl$TD5DkLRH^&b~A{L(>3R^nfanEPhdYeIl=+$!_$L-Im_? zGAU1s#d7Eygn<a=a)&SGB?;|xQ1^`H9(7}Gp&cPWfw5doLbdHSIzLH!GBBtIiklwH zUzsb<ZET>O!TK<l$;k%`lUXCiD-grb%U_uxrY$r~E@_0mC2W&-bOmmJutMgVGtLf} zAEy+6OWeDf9;hKxmSf*P3&rvAK}ouX7*P(e$H>PK8yoD2b=Aa$*YP@aE8wSRv&c45 z5venna${$Um2l3o2pcjvei8U=hYIfiUtC(TI}(OL>MUaq_>b~;mV-U~w$7iMWPKHM z1~YVF2kAPkML~mC0ybXc*<)P$0i?K$e&w+`DFOOu%s4;~?`Da#6Wfx}lp{-CI)}%B z1y5yQ2}r_Cn(=Uw99DeCsxdL~288Q9ZX1qEvDu>?@31$S<SD&By(O_kE<ROx7f|Vd z43RP&)Qw`qZ6o_Lpg0ZeGEbb|!6vJU7q~l36QhtOm8^&s{cCZubR#+bFgBQfV2m|3 z3xzpF$}7-JGq+jaVw70I@E~V_5^0<KrxlX=pRhYvAcYN-0>&_T@M4lOkOecSm+|}k z_gxL)r=--Q*&#)7Y!SOK$`43+#YfAA*f_cPA9wPjPR5}@0koK=pn;o&#I9gDy*c>7 z15^Omw0Aty1(?+bPlEraxgl2od#;LvOZWK)&65c6xp{4R{-f|L>~s)2Z8jY(68e5D z5bK;P<jUKx=GG-mGF9Q7>ZM?Qf?1Z73MNLmH@gB0OY}>+iU4V@2pn>#XpNdK?0B|q zOw7)v#gXt9bw~#GK+g5Hro}K4@j+#Pnhyj!dVfz|V+Jd=OKx~Df|M{+l$zmp0k)7A zsll@|#b6X}SFKAapvSCol(siQPaOZhd{FwQ91JN7$#H`xEW|Z{rQgx+o`||*JyVJ= z8lT`Cjk^qZS;&%3h)C5VfI&0d4*0J-;vEd-UnOD+)u>$l%UFnr#k!Y<;vAg!9eI<r z%zq2}unu~-1smDhb<RO&D@tY|lj&fUG^R6_?Tk4kU`wp~h)n^djS1sglX#d`gDCe7 zlIP@}n-}gim7^@e;|kb88OPs!9<n20kNpGi7#kNxKx?wKVVP#%88$8lFQ~ptHIw{R zBXp7dJ(=F#0l<IQLlkH?R*)DqBzK9};?n44tRn_CwoQVNPanI`O3n`Smp)tA%oe)y zh;h>?1z?<6ViY#7m9FSn!V;F8>=ubhRo;LzATXJ|eCV46ce+Ie841Z*x@tEU-QiG6 z2MLEbhI9!numtZ2rm~mU$6xtV8ZSb^2;+>JfX9-IPd`u}7Cu`A;`vu*YoP^S6CTp| zm>=X%cTfaMEHIj!wg)uepot<;Mq3p!cp^i+TwB5*@uExANLM>&#gNkXf;(JvieJVA zcdM63DoI$+F)=A69DTYvf!O0R$3fGB?ea!zD@qIryZX3$o^f445adfxH!7QN4v^Hr zT(5=K!be>&W+u1>XFwPnX&3r1Ua43xqTxNz^82p9+vE7-?B>tfGMzn@eMsEW!Xrlz z%g{eF9d_V{c(xmf30cGo{DEjU8a(dXc1eL<CrrH=lz)=w)eXaE26|05vNaMYMu31^ zZj?o=d@UD|mUPNMbri?sNCXhFW;a8xbXK_-6ljW1LrwRfnmSyoo8Xo%poOu_)g{D+ z;kjKA#5D6N1BxXi85WEX6vX36V*ZGdK>OgKX6IAN!4|(qDx7)r>9pwqEYvV<ymKIf zfiU<4cu)gGxa=C+hlQAbSvx+zJe3s+(Z+`sNf5cbLUvO<H-;dWfW#7*%DamSk!(ZS zL(vl@(<@abi`C;w-7|9FSH*NrM+qpd&Z%cM#2~$B_*TG#FxhUK9bLg0bumm#yoOc^ zm;+ctPE$b0c>h;lAVR5lWcbi#0GoR(@}!FFhz4g}FoG0`j*Ll}#p9M9CPe!;dO+)v zk10Z3Pn=tU*sh~{?6?AHh=HnaZV_>xu|tOojt<a3J5EtL7uc1rI)iFe#2CHE+NKu& z+T-nmuO9%o6lSj`<nUCHv@v9l;tq8ZbP%Ea7ns5K>xs66RRUQ)6ND2K<{u7=410on zAc6t_^m`V17VKc$LZQj4d(i)c%a3x$xc4fC2Vh{r7{jmwlQ5waBuQJSK_%+_<D_0? zV7N3*SvHJI*i%i)LJD$1$9&wjsh$s7enwfwm76BRy67A?^gZ3_$dJM1dW6GMvO$0} zqaoO03tqu)vKr5##U8{8pqe7s?H=7A1$GD)D!T(*h+NS$b_IwK4ogo2icg%WOdD7j z9uxqb-QW*Hw>aYaO`M&9B(sn9iGfcZyzqE#q=&R-$!uyeX>^H$glSbH0c@cB^$acr zBX$997jQ!vZ$auWL)8{C&P<k-A_~Pt$xF)S5{c3hx1){8%M;nB{3GB66@BiS;;Rc* zSzbKF>w~ckIqF@y10^POVKQeGGGw{?f5J8{Cp7x&UM4CwJ$M=5g3Pnbwvc+(-LlV0 zR_Y8B;?_Tg2ed|N5)cMOXCCMd8vRc)cu4KGMDl31`RP&8#X)#}QzSH+jY;ey8ll67 z1d2Wvo%WNv^g5-6GNh~~2NLRfPIh-3;c?E<!qvJtUEuf=Z(Nu_8sNh7GLR^EerLGN zoZfzhQpR<0pxP7;4;bmN7ef*dR^aYFiAO~hqrCi5VJ)9|9*>80-arfD@%b8ugZasO zo^DP4*t8H#pLnGB0bETutGRoSg8h(8-r92A!Fj5)yMZQy^}?wIT-jj|{d2AbOi))q zTHewbta#nr_b|B*;fYYiCgH3-TCj>MdXURjd>L)eYDzqrn~6^074%Q1z&~f{7Mk*u z(r=!U0}JY<v_1~&9Z?s^{k9T-OPl3jjJTb;fT0BY|6q?E>0ZKgx2I27Yn5MjOF39L zJB}r;@R@ev!3go`Wqi;sAJymfO!@@3`YePw`N~M>vDSR=X2%6@S3$ODOEJY|gd;!i zOJSOBmRWN}TD|j-x=a(@(_8{VMWAO}0;LWp@6KOxn++0N#Zw<}=Bxl<dcrc%U3qE* zgH@~{xHo@av(u7^3GJl2LSs-GGFBZ9<X|wcKx~pIy(NZeF^-uLvG5^t7!m&VzD*d? zg0Kx)xS?a$X-Z92F{FF$DFWpl;d-v9SxmiwXCWPovgRgcVIH<%dUKZn5y%sLT9c`Q z3=qg2&$|KR8F$1gPKbi<7DYWv&c_rk61#wTv6e%~pi5Jq9E4lpu;TtBaADD28-fK` z@;mq5JA-rwAFD_R(oi!!V4P4XKx-tl)yqJNfq`LRSTsUb579!U%DIHBks@3l4C)6f zD4NL7{_s|wlEjW1`{bmaor`cL^!Mpn9`6=0E;vaEH+yd7CLz`0eLoTzChA3YO_MJe z@xs~=0R+sYTN%-Q<g(GH&l%jh#zKT$C8HaU+Az|Rp?m?}BQS$AakLOJb7*K}P*vOJ z`(a|<YM&Ct42{A$`aO)#82@e?gc|83gS7)0XAU7&!3{J?DbY3=tA=ij?hv|w2GG`p z$Jz^zaPiV{FFtP}*ezZTFes5^><h#xWgx3Eafcr&$q8<1AX7!%=v~+uEXSOl=%!bc z0PhZFgw?bv8-*bdy$c!Ir$)3}4=LNnThQ=}r<6j{=&?fFC}c4m(#?X&W@DsXEPYUC za^7)hWX6iuJx~flH!^&NC(Mb@f_=GbksSw7BYtC;jCedgWk8uzQ<9VBrxXl7(GM}j z10dw=ZU}Z`GRVhH`S#^N5MF5VcD^7im=q?6G)b`+812P?LV!280~@-37RA^E5-9sj zC<`qXh@HXn13V=M5r!!5uo$D2Clz=dM`VWohsA#sjZo^b8Q>ydGEjbq%?+Rdd>`=G z5yyWdVg8^5(D=X?i%BGpg%0Xy8#>Y`CL%%DHIX?r@wEZ4E@xb96|>${JhqG1;SOfE zAAemc9`4o%NAy!~MXcb<MU;ky2{ct16s8F+%`Zr|Z|Rd>xTPD=VZlB=0Wb)tpz-e1 zLV9LX|8xn9nx=kRsg*6u#d6<DXSs<#HqxR`pLF=5D2&f!MJI5slXeF#oF=C*&JgEA zHjOqs6E`T{0Nxa&$;`yB34FT4S{y!vbr|`@&}lqwr_c?pdc$1JV|Q6eU<WXh!-WPN z4lM;-Ws)Kvz9#k%Ae>H56daBY*wEcXcxtDJIc5w@HTzb<+R~0zq@uF9=YP6G!MtO@ z-H~Ph8#dEpka&!Sk6i%wg1!U*#b}5nu2=oeQh@ws-r+jZO9uE#e)k`dg7e`UJYkdq zZ{==Rut6TUR%(eVcW?!Jm~jN}#fZRkPS)jRnB_&!K|-$8$%T*Muv_eqdr&x?iCDu1 zX=Kp!nxhyGJ#&Mz*FNmS@qr8HNAcX~5+FfFzdD5a!4bqE8%pTsPGRV-UkdDiTRFmt zqIe$k-Qtb9WAfhlk8&_R-X~Q$1MWuo?rgweN1O}OgSukr?h0r1LG;8Z)i1RVO|i>@ zggWFL)~CU>XzrEtKC_p#Y^5NZn<BxvV-Nz{7x){1cwAybyGuaFDT5$~*5Vx`8t%&l zwpvhcK8^?YxQ}U+P-+F<I6#|!FTjqrG<QfoVUTiOK-zbDaQM6h%9RdJ+i^IP2E$L+ zv<Nw%!Gjg7=;sIf+aAJP@HCzP6ml?tyhGSRJIdmU)-EH2C;nmu!(rH^Z88efR=$`F zQ}3Wt9H6@-k?UoszpH2tQj~%$83_bxj!3xy8mwV$6t3w>CNRA4)z-Y;IOmE|kY;eF zc|UfXKuf~@NS7Qd$RFKBlNO@f(njYf%}dbmM0WEZu8M^m1IZyJU&l9c9`9a*`7>)^ z2aNdewBU6krml2uE0Q^~X#befcwq;hOgPK{vO&;wL;FY=_ova}fG}AKrmPqmy5x3j zv#lH$sBJg?74D>`rWkj{($*&0?aj#{g*D0Q*F<3}Jy3xQ9ZGAK8`KPnJhQyI;Eepd zV2C<*#)8&j3<M~Y*sPolBo}EUEHLw}J3Y%f>W*;mgnjTFa)Nj8491d0k;JwcjT3D| z7qK9h&MI+Ss4t7^#IR0&La&s?Y!$nnW`2*30@p14{zlgT=?#ha=94<@MO2E><!V%d zYXAYW4G2_+)bueu7-E)~gS8ARHp|wSTsniHOy&=Z6ct5&s`t-LN$Tthx)`GH==Tpd zDN9GN?`^{SnnZorAOEBh<$y!BmjQKHA8gBaZ0bk8%RxyWC{eS&8~G<CjJ<0@bO9_r zM+zSPnU&WS>&}J2bITXo70~*-GvKC9gu8Z%TTBkKg^A|0Fy8|wW@~<<p7hwjtfQrc zaAR@Pn1K_3+3k*sDG-d_;~F};jM2n?unHK}0yeBoG+tObR+Py@S>)y0ESd34UFRQ` z*g&3m5E~+>^rhy<Sni|8x+;Ok=jrStgv*or!gBAy&RYyC_0tj3pO08lCrz=6R4Ivl z@@6TRQVP@u6*Xkw+L`E{Dg)JV-#+*W(tmAA2Uj*@!$N&mR`+A|JlxzMkctRY>zXo_ zV6=E!3qat}{a8F6x0P86gb?WQy7`ZMykH+b(FtUs8D*I^BtN5lL$SJa1#a+=K0!_; z3=ghbX%R?~zM$$V0uO>P?ZPImGW)yTDn=^>T{e(Cq6`vDz5B$BtTd#%J9zGnV8(Ix zvM_I320r7N+(_S<Hx%Q=#hM!+QiyhX4?Y2_|-SDqZE1n?^cZxag8r0eW-1U9m{) z1gVHxv=yjcmJ?j7?7JxS9HCkSZfzqiNeRdlH7yfivSI_m5B>v6gYoNFDVQXYq7BWq zg0dwe@cbndqu%9_B;I|{&w^P^bk?7@4~pxaio~t1Z>~y{6g65TqexY(dU+dh3&ReH zRvTC`;HvBfhuG?6$f)0MoB$Bw;}|0S{%euiQNm5$9VVE=y4`UB*_yOJs_~k5doKNp zcMC;y$8M0gLs06+{;SaJpHdN7o6pTuR<nbE5ThJ)@jjVe4xTu0OGfu3HgmFBAU)dE zjG3jN29DIx;8fcGBs-LYWq^0U8RyAN52~<Hm-{k!ZsafTRK^cwzq*Zo0y8r!2TOQK z_JiMNRsOxLryL}#K_`8LrkU-SuQd6v12iN0kENg%b<91bgcpWU0#ID)2ySeF=}_6y zmJ&MTeM;RpX^%WxjI;}j!VD)PYMQb&MDL~GX$@!TJb3J9pjQR009in$zv#fuc+ksW z$Je-V=+0BZ#ieR@UpnsqBD@@^UuwsIaQUGQ$xs=vNQRAClQyhX$6KCAM1mt6^d}ax z1bQpC2QFMjJLXscQQiu?weDaWI-|MBMzY74*G<b}s0H1y*%>(CKjqjnXkp_cKlhXh zDi7t3|0N^)0MUYP0AlhJ5e@y1825TxDwipAz4{ID*>QQ(V92`z`h~)L#vP%T_@5|4 z*@X*q78x=u)L6bV<)dG0L%H+2nOha@_4*79C=1JMP#-rkTio@bLs&I7Z4<Z5)lKGD zU<3iY;Bj%noRN#T>6V^dTkG|u5An+xkPl?skQVw=65-s~Y>7P|dROPXO|lK^6&-6u zry1cop>uxy3Vx_m#LSqm9xk9=xh|vA`W8X171FJdBt*T$Hla6`f-E8OCH^s&W9%B7 z&e%i))d3sQ@X!Z^DM1Mn*2r{H&tQV!ZEqcRF7E~PGsC(CPWtw2CNf2u_{nN!V&{O6 zPzoUZY(>)8i=aE@4qjyX+L$D4B*0^^JEGON1OM}n#3bSh3#Fhexp^0{JuMQ#vTqXv z*)BY{wDEUdv)39gMoor=sslp#P=4t?Ipa{S8Hwaf76t_J#Fnwj1;pyb?tlh>xQ#Yg zNOdwC{D|u?Fx?I-zV^ivm?imVDFFI+Mt>$JWp^We`?|M7crQBk|7M%)z9uECjur<7 z>JOGI09t5Sj@3Y>cn&)ax);$bqkxX(02S{`7!*!dkXsm@k9wOW4qHu~n-q^mhpdmm z^T*C*qE{Qx51(Eh3jy9f4m=3y0Lk0FH?G`y<#77q<qVnLT@G?=Dd%$BK(K-$KB!G% zlyq2tan*qR0v3x#6wD(Aq&z*n!_(*rdRz}&A7VL8)&~az(l=>0QTB(rSi;YMAm&LS z-$hi+#X(y)5_KZ7mIU=SPb>x9cYmIRP<Gg{U(?0>MNocjlY{w34wGUA5gHyWUiUvy zfATG4KoA9CNM+>!RnW^pheS)-$y>+7VPOb%KwFQgu4p-S8OkH@(x5nk+MEn$Q9XVm zpTb32E3g0$EG>a0aC)5u4(g01m|2Vtitq~XH7-F~5}0|S$x)0TLpVr?u(ED|aO}v| z4l&(fFISN>(n+0DRyLmfc}w4$+K=4<x$831l?)FDE`A0Hfi-x;0D7$)(6SIEqb&m6 zIPRr{Xwdz~ra;MGGV*o;^5Z6mR~&N@++YISjfa_58K?F{g`Vr9Dz#|%YjL`R1XXiI z6YNs1>@tJL4G`HCR4_V7{G#oV^Fl}PmGXwtd5lo}pSvA`NNV{k66cM>3V-+$lvd;c z?9s~vAMEF@FoiA~#w>=2_2a5OE@!mp4%{s~iFQdtj%Y8?;(mmn!LW77;(y|gAzcF9 zp|f{VW`_hz50~<J;VE}qtfLr9WEJUS;55Ygb>hZNvCk<7R1&pNBT||~55%|r4tg6d ztXy2(T;y}e7$>uein#0-O0+6Qc=~T+tv!o?-I&7s!fVl<woH%i9>{n@|Jp%QJdh#A zm1Q?CdNf-PlhE6<m+#X}Kn(B)?WkhpbvZDUMO|CamgOeZ?ylfU<s(UXh+pbt#1gVq z=!MF3wcVsM7)V?$#sqoG#I)M;7=Qqr)!Bx^9i}`Dihxr>eSMQ@LQ9h+puTQ<s;$Hl zC^3Jqgu`AovZUP_E9{O~SF<b-`$v^nb%Rg@^zWbXzB#Diao%OhNwzlR(LboK$z^bG zff7k*NFCe!D}QNya-D~ypTb^jG7t=k5i>my0=7el+G3I>0mryh#T{*;-D<Q!nqq38 zK5a@ds<LdH{;Z#nG1kvOfZgB9fgvcKu(J!7A)p)4M(ioB$1MyH7RZwf=WN|s@iuuK z3=xcEC#~S3>NxteUvR}DuIMA~=p!y~m)rpSo)}{fRscc6f_Uz|(!s5MuCT9)oBN=% zaS3%|12Lhm&=>bgEp5GTP9FHRWN$u%i3)Zimyl*alqHsp{3FS0Ivqmy%+=@)fFYcX zWKVFE1ZA@>8Smj{1fvY*1Da?I4S<2VEAIXdAI>mBuj*{nKJvyaw#g%l4L=r(R8Tp? zuwM+r&oYr@gYsLJba@>X@9XWv<6dl~0FjSObSV-L%@)E-#J4-Jck~H%|B#eMw%<u6 za$vI^Z8`D*jcZZRDLU@Va)A3#pFwE_lxQ?0CM3c5E>apb!hK5_P+5{nEV|Gnd|BEf zG>vW}Q#J-J>bB0oHj)DeaL(8kZ2rECUPi78vm$6!*yy--fNt2PG0>>B$oOVYTLpWp zqAsd5KhG$A8Rm$7C$#S1^d|4s`wj;`044@Q*li|yOl-P-ueW=bksc1F1NS3(7C0PK zyX5mGxp@f%O%}}d))SMgr`3RM^1iK)+)QPDa#<Ba*gh=S8sZ2OfMU@wh6z!8aS;G) z$SADrtBaJgh>}IoOy`X%5RjW7)UZai3|9QZiTH+$0RaKo2C=t4*h0lWe_~O%K9a^I zv?BKZME|DX2Z#AjK$j0hIMAWhqa9id3|w*I@fg4|e{RpzDX|4fsK6!i55~fxv17qn zo8-tad}RcaojRsAd{{6EQ)db}kQ?_tsh|ISN1Uvho{6u)6P_pKrVp(wEae_1M9wBc z#^P!GI)WtN@WfyV&t^(HbWFR%NiF~-&bo>uz%^sVkVQdrFoP~~91>cxmk9*^G6e}J zI5Ef!i>Rh~00tvkUt{I-yv61No1&j5Q?-vk_K5bmPXUyP$Gi((Nl{O>(BZRW?kH45 ztwMqSiQA<O*)%3eX&92J!nF3`9RlK*k;ph~N)JBL2sa}x0I;e$EqgbcOS|vX8E8$* z(iMn<oUe6<e2hru#~Zx{N?yj6jZs|Azfdl*5|4dAP$lyU>o9j3RCgo2$!BuQlN|Rh z9YP79*ULhYlCivVc-S_$MV88f{|YqfJM0I5vfEZAFToP$#|o*-b<t$exFKO$aJy<V z<i0&is#^VsE4LJ{7!;oPrY3E}5bi(?L80RZBV0{SynEa3Yj_5sPQ){e5^ZyjQm{ZA zEN~z^*ds%Zv!z*{E0%YCvJe@eIuNE->y`2WEp3V*+YI)c`<-CJ;sFb0&tXyTv>eZH zGj15yMqmIILpH;>*t-N;of?K>G|prA4%1?C{X873iDZp$`I5Up2gAX|P-?ikKhaCn zDs0&}3?y!QI4ca8;PvTLEZ;6LE75NFmKtT^LbRX~S4Sh-O3D!d-YmofQ9sv;RWC!X zhB;iBUa7fy%2dAT54KSKT9?!h;dqF{pjaY#{SA8K<J(6c;j}D(3F2je?ydZqjW>_| z188(eqV)szwIr0(MwWyF)-BL6GgzrAX*`d1T@x`ZRQR7T1i2$zutB`uTNou?>ck|^ zvUr(zeiIY2Fq4xk7^`#$h9{gW`xqovSd}ocn~7TFS5T$6gpkl@0DDLBIa{pzsT6u& zu%8_Z#EOL?IR-TaQTdbt*WTk96le|_s#~UilHL`~Rl(5V1$UasB0OxVIDzu<{?fH| z?{P5u#+J6BFw-q!cX-DRL<mjMFrnQz1H$z3@c8gJ;E*uY-z0@(`d7HZ@Sy>T+YL*f zZNFAVGsx0e)HJfY^}s=UMz_oUAT-QRp<6A7173hE(7u8QE9EELCh-;@jf!9fjLxYl zGR#*e^+YW#Ave0r5c{oK{3S;k<Q06P+b=@Xl68cZhT<Iq7*jAc%S#4>uQ*8mT;2Nw z>>%bimut0P_o3=Ul^7U?_@`Q7dYp&k-2vXM-opRHi%}DImh47Nk79^EMff*0p&Jz$ z4mdDuWcAho89){lyj?Hn_3GxYW%&o_QD`|(Y2Z9z;lh2_vFotZ=u-|#3#~DMsftw= z^l?v65-DZufoL^6OKcwP9tAV-!M*XYXW}%X4(E{x)3;V)TRo;Eqav`fRV<x{04u(5 z?%_zott>?jjn*c`hla;n1`1fbLl~lwOaf+dwHf8$@s8jGL*rJOG3yESJHqCH-4biD z+_wY;?})p7Bfo&O#4S14<HIwcLWC;?z9VjixWe|R6d~>BD>do4*oBlET~?>6N64~~ zoRYS71-4H4OHo1i>S5d+f_DWOCNUZD%ej6w`r}&H-MMFp$)~tsFZjZid`lV~PGmWl zGA!`dDPYhsU99y;Y3wjP5V!Q(&6NX!3$f=tQOuAP#1fH)fa-HjxA3DBYI0$*9Uo!D zdpZT=B=Xsog*_l_*PUim8{B=331qCG8C?TK-Gz$90@#otizF#D%s!>LZpnaeUiQW_ zFlX0cOCo0#b}=?%@*KC?ZA;q@2|>+_W9BRjNAQG@Nh;2K6GuZPY?*2p<e?Ny3GoG^ zaO|*2o=Ys)Yos`0>+tyMVFGf`;yryf)G36?PD7&DkbcysFEKFg;E7CPrvijXPTf)( z%H?lhy3r~*cm+5bqs(c~n3fC*P!|ELdG6?>CG0{qJ{JdM?;x@h3ZKv%tWVhDl&{zD zGPtk>Tk9G2=%t{#VT|5uozLgpw+;}@!lNb0s=iu?u5pY1Nf+(`F3v`)Mr0OSg`eS> z+GuGy#qP5PKi?x|uX(2bUO~8D>J%su+XWzkkL4r6CGNe*$Y$4akU=w|gKL%4>B1a@ z0b)wV?SnK<MqvKz7-#zk;Hp<R9=8?Lm|R1NNY|o)U1=sZ*=)IZhJ=M2$qACmBu5w> z01eT5!<7oVLQ;$-xk}XLXIwZLA#uFNq!n-o-JEI<tHxn>$|p9DJ<i1`2LoHjg5zH! zq(#kG4>^Gni9CbzNhL@hLZOG7Tv2kz06VDK#?cs;#TG+#1?Q7|*lPQ&a6O7T^SEWQ zi=FUI1Hp?5A!fqRvPFm-gx?8jzuidI-`a%Rx<t2+f7KL?Un;UeXo?kZP-sq-xQ6aA z#QY%1`J(ATuVLBg!L3UqTQk(~PCp7b(fDkHcM>E6eT5^MmxFcNAi2L`=LVq%bm;bJ zMY@F*HZHTeit$|ShbDonNP~TVEmmfu<AR#vXynP#-L-L#C6_QhwS*(-oRWo5C71&W zMbW__gSAJ9dQJg{W!%I%TvrNwVh+#1hN%-1W3H^QEuq!KK=k1TXvh6vCr=pc%iSRP z+;n~(9wvYM9XSu?fwoF%(jD)d$%@TtAhkOJ#E0lD149=B)*bO}=CYWP{!{};aw-YO z6f}SXbXGFDGqYy$a?3sQbAZum>mgX^SPT(E;Jbry?)gPH@CVXeGH6Fk;HJSOe`PNP z7c+Ut>+`+2D^{R#q$@&6_~dj_|7DEWe(4jQo8QQCP<=mo6MH_X1cBRAzr;Qs;n}H% zSz;xg)IM;c3tqq<uV`GDwdv&`hlxI&6`X~*_)PwwCk}OP>VK32dKEO{Cj?y3r@Sv# z-@znH*q-bKP9Odgu`9%V$6$8@pWyYlP&<CWjM*uiHwqZvg@W9SRrf+TLhdpD(y*7M zp<-74!4Izn23xxH+G1Ubtf48A;V}a7n;6E45}q3C?|Tt)Mt5z_*$uCBzbk8njg}Q^ zY^pce>*!aixbKhZ9e{zC%zAF8fY~jhz@(ZK@g;<>J|a=LF`kMX<Bj-KN{yOj+?fpn z4DLn`BT0;E!8d54k#tt_l!V3{?}Tp@&?qO$47RHmpWjEmNhdHqVe9?A;R926Zr{^! z#kL0tc}Ux_?>Htijm$w8DKKZs%dJ|h9JG%Ox#9@!MTViVBkXHb5iQ7T;PCSJO9tD* z%dvF#A+T**l?-Qwrm5+f$1!gSUr|4lDrPAoeyurO+Gu@j?!n?v+IL6sMnJZm>JiOw zL7Q3|Vq!XjT!Chh!M)Lr{-7i1aOufl4~@<Z0_I)n%vbukU63UUz&%p%_dmAtILPqN z1S&K54q!q*U>sbbC*GL>uc3yPqgTK|9h;*%1RJ2!A{ZfVDF)17;e|HSNM(4S52IBf zU+h-EckE%C?71ri143<JcMK3WO4z#a6jP{7sz3#*<Lsb}qDw6k_FC>~PovtN0z;@x z2L!cQ7fZF=onvkg;*N5_TZ<c-T?2v;j;~%`5y1X2KObsc@{M0^GF^O!2URa7@K4H+ z)q@C8Pf0+M@}N(udK*j)LB{Q%4|Ik&bjSp^a?r#ks|b9!Sqes&=+q{|LXn{LBJOB8 z1XK1*l#Q&`M@hsDT|AWR!gSjBsj<F0FHs%~OJ#B<qUmRa0sjL`sWVi)n?~}q4U`j1 zco=Tf5E|~d@c}3UbMlI<fl^dk<2mr{nkUZ0K+BJicUW6)MxvH5ZQD1xja0(}+*V8i z*O%c;+_^s<`{*(~DLNiZBEh9jtH9Yg%EUCn9S#=sc0Lli#~y~7Zlye9#c5#*a4t#| zaEKYA`^u_$u}tyMe?7tOKx>6zfLEp!a8@_^+N1Y}AL8SUT#@XmN=-Umrv;oK1AjW5 zLENLC8ylE%VksZ^_WtA3A$V)SJN{qtqmLW%uOWh&iLQ2NAA&;hERoXyjw0Paap>>~ zW8&lnqrR2x1Cux)=(5D~qB=R*V!Ktx)F9<NJft1vpiPf1k7Z+nf|a65pI@4!FG$`> z=XejWyMP^ImJ~GD6}ZDUvamfJxVSpC2k;Xr37#-(Mx~<Fz`(FDXjz!u>%?qMQCGk( ze$GABt@;ZN7y8-_GHt8zb=@>%bLlh-zHDqT1LMH@7>GYy(EqJ2VnRc=NWFQS-&n+P z#X|>M_zhPkThjWK%7B9H+ic<oL)qsJf<oQ_w;u*Xzevd@Z|u;Awj@!9DWa;$!T83g z7D~w7)|3fJ09t&MrN=$W0Mn8vUpn$ecTfC8G1J6413ukQ1$Y)~_s-zCS%h5-4f;o^ z*yL2tzm$nzPeXAr@~??l`4?88f+xS^OYo5R$jC~(;tmrx2uu{;60Tl-5<8!-6!y^t z%qbrb7~<2X5D#d0fM=3&%!8*uuVCRpEcL_yknawFT>(1*KFel3{`pUqxotdo!3aJh zOdff~%q%`9c(=$sDC;&HJqC%JtRS9P=-oz&g*-FO$_$xOTjJx#@zrxw6gHgEf|HA1 zraTkF4X{i^zgltk=Pri?V~T+mxdq0CxAuz(FBJV0DGOSB2&2si+B-M@Iw+|CNuy<S z1xpes7DOJn_Y_?60|NrY%*HmH9G0p$L9f`#t^ow6MsBU=NesB6Wfh6hSjHNjb3O+0 z@J5#jgXE41O_SRq7omvkJ4~U&3CyuLw4r7|r1m6Jc78?Dl2v3#vxDiMKlc!je_NLL zAduzj>9SapQqY98j1i7^MduvY5=r@e;1%qc#5)78YM7QabP7ke0kJZ3SFlNV?hRuP zo|<cz7U;j&-nJ59<2_@f^+BLt*-KU$^dK(JU$v<N9Iu&h-zm#asx>p{o-!=7Qiu6@ z^-JCFmZo&(000!L3m>+F7tAz<F@<upJW}=XbWb|Mc}qS&Z8<sj5RJKj89?`$Yv95X zLqe0#G>U&x;0L67o_4F1$al**EP&|@R^X*nlQ)A#90X0kwkqhRx&EI({tk99Kw-q{ zCg*_MJ4jD&jNKb+apa3R$NiVD3%nbSL-YntpK@5#XM(zJIJG5k5nJ2VkydYHNgEb= z+=II3s*oVMKK+Ndrx!rU3lgQ%X@hfc49&c+pK`|s9#FR2+_T)!^+abPel>&%*C0?o zhO6afBcjfHgbYPG02;oRm~}`m$>s7CdLrUbW7t|ihz)nhKA-_CU}PrO$UPxptP$O( z)K%{elJE`~w!n3jZyNK3Cq{mAzpa!>ROo2c51oemlfgw9%K<v1G(qjHvCXH?Zp~yk zh#z<VXbg&xC(p0aA$TCPNE_~>rR6tgEL7JDI-)NYX9TX(MXiJty8)Qf=A9o#qRbM` zMiXtg>j4W0{vrD``vtnQW@;s2m`R*|pj?1UaHzg#9g#reoX~Pr#Q71-rLUALL3Xg3 z3z$U1b{+pp!K+O|4?j2%;00z`Y<RmDHr6En6c=}N@h?mfr^J508yVqTbR9I3&P+U- z?NHt9*;VR{Ab@TK*u9&atqzYV67{bI;<%NFegjW((zBoBC+_Z_Z!GIm3bH4$hfUI; zwc5O)Lb8+3Q|{6vqgYdBk*CA+<`Urd-5mNQ>Xtfg-i$_>D>f}<V`w7vtV1$Cl0<T0 z*HxQXDdX*?nxt(k;(dPkSS54u;j{=fZ31oYtnj8qSeTz>3)`Pcu?L7f4Lssff&f$+ zu!31ajo4xFTF{Fy>~}Cqbb|GrWf-qQVsZ5{oE4iSc#uiw0)`?&hK{zpCEVSx)1sMK zS>a!B?z?35nt8FsKV%rfv$<*9(&H_K{gYLDO4d*o#itBPB2(ZQ>!U_hr<RmPGrNJd z#~{yvo^8L`cTg{9nDQ=+@g9za`%(n}@y<g9mxa+dn?o4EKjN%|g-Ewnf|fR?v+Bts z+|1veJOb|mx=0zPz={no{t$12gWKZ{@Af6@LlVp%%pi-y(Pmemcl{*GL!C0RXc2}; z8#|SWs&FPrP-dEhEnDjNJO{71B}#)eoK+l1I~ML8a9Jx*&p<D@rw<E|)icF&Vy{KV z%^ku8n1EY%z{Em|Pic10RZX>SRr9Rwnr^%l@Rwk6<#gYJn{9f8Mvy|DkTp7Nw&D<$ z${^Pj#u#O}MT@E82ddZdXy!wOEg(XLPYy1!+61ddv*YBqE=)Q#`f|5$+_=sn-a_=O z%>t2QFbAEB#pP^6(_k+u6RE^p;Y*ic`geE)14L{<XRSmjJyrt;oZL4115dLZ>4*$3 zM&08-v<(9<I9MTB_MJf*R;0`^z!!^b2AlobrnLrn^1M4`-RWxn7LEX8T6Qz*bHOpC zp%E?bRZOV1D3}?XFapV-0&Nm5%gj|Fw_-|npn!kBd{KW72^nL)cLC)NXHi!pQ8wEg zu)bDE*qhV6mAdP*3*FKU(AAadD!YF_w}pV35x1~T?x5DtTec(EXuGTYz@~9ao_G2T z3b2T(U4{i9gzt6Ye&n4?j`?9n<*+vKBpCAiDq0K5kv6pU)ExY~I?KP`y8sO~9BE00 zFG|B1u1SgS)tN0e$23`GLU{$Q(m^aTvRK@h*MX@Wt$AMJ*|%<;0^N=rxBpqf1Tu){ z{7M7*l#X$J)o=<}CRDcaLFi*~H{5`gK<(X8j0cmavo8qj3{7!7K8OS=e!}m&VPmuV zPZ-rU*)TAOWI*1yw#8v)+c-Lwvdu%tfEbpD6&cWNFpP3avRaAQlcEz>4&b|>M;X?d z!<e_kJY1J-6Z*#mZN_b*rFdQ5LhY19T8UqSf^rJJFd}AxqjYvKK|l5n(C|rQ@G?Lz zGS?@CM#(BxFb>V3WrRk(F>ZH)3wntak`Q}FFi`1L)>{}u^yCa)DUVyk3JCNiUEIq; zj&Ke-2@LNFaJ>5vb@LWxAswG#iCU^;Z*FUbZU2kkxiKVco3|FMOg$HUmOzY~Ii@|f zX25HaCAMIYq6ao2_|(SeH5QeLfEF$`=6U%*kOZWx0akgg7sx-E^A6>T6%}k66y~nR z4YojYh+#;wQZS7yXuHu3R>MX>m|q|07<_{Zo+xEGcvq3D((qQI`KvWf@8*s)tmq@} zn(?UxTj<rJ9E=SrG`Nk6<1NNs`nXm46-+cOS<PmfP$pXBtMCR^;1<_yyYhI1{jsYI zqw1?5dpf&BVe}5TjF){*;&Y-gOY`Gc$`d_g^l#!Qc)^F|Hb|66)f*PD8~hVaXeppV z?+$A0K})+cH9eL4eRrmjRU&jn6HWGKeMh%rNbGxpmX_0k2TRZhgD!axxesyQsOV`D zGtQ_%X-kX_ij;yWRwfkJtvIL+H*{aOXlXpVt&Tv`BJQNX*GR}+v{q|V%*sG!DKJ?r zpgngkTtNiNR!)!1#5x`@`TG>WTfziAH8|ZDUt#d#Nm4@%ncN9OBsNPp9ZzrzHXua$ zJRC;%Vi~CLYgjTghWU4xL^4tbJ=>uK94N4WD7eD_kT6k0NX>!*e08BCA?MmjI^AL$ ztQ^3|xkKnvR!D_Y!m~Eu!Q6eZ1#pa&0j+*hXSyZJ0oyP$zeZFjo@NJ3)+7PPO%WN0 z)q{T3H{x~%f}wr#ZbCO|H`l<I1L-zOH_mX2utl*}k2Ql37Tj&U2V2I9(iH9hmK^S1 zFhY%1TU;|l*8x2n0qkIFJ6uN@$;R7++aG~5+$aI<=<O$2+ugCmARf?T3xU4_-rXGw zqtem%EkJ~xz0_n-VEW6D?A7EE54MS_)bD@^<v7W})eHO63imuu*fI#o*fWh;y)Yb_ zRWf&Q17En63_P2{l{m=CX1K~J9A*clxvz<Dt+{2mSa!=Puur6^8N0!<Sj}uHlaSn* zu1xPB<M~-JPf&k<*Z)owB*9icub6w#=bx?09x_=VjFeh9&cBWd_ppiD7@F4U*;bhB zA`SM0WoPKB8;Ei)1nS~YLv@wg&<h>BlV(J$c1GG|&C$=62J<c$xEYWOc1M#!Ob9WP zg}9^EbW7ZN{GLlrTP>nG{EJIm?&YG{63#o8O~D0O7=}PuZA`o?P`B15%ETIbP>;%- z5_y3I^>MOwD=d3>wwdDxY>0Ps2F^Rk*wQxW9ybJ0B&6%G&?#S&M~9X45n3jY(#Mq0 zfGxf!L(-E~U4`I{J*~GlO+J}nST1*XkkLc8gQ)IqN5JrpHosILS-20=_oKE*3C70F z_k<0BjPPeRr?_+ICJ?I}R9<)B>~ZC~*-mz8J>rBmd{9XPw_m|omJLhBL6Z<;|C>`7 z;h>cq<+L&&U1O%44J!)2Cr_V!9&0OT1vMqEd$?BC?oH;oWk|&U@US3c*eOT|1%4mX z7L2DHY;2q=w163y(xz8+0Re20cBXFo*i2u_@DcnZ-oTEKVZpj|fP_xzO_eFbxuW8v zz#i@l*GWLR)Z$li++cjzhG=^H)T^PH+amAJQgL6tsMb~tu`wAe1?wYHRugAr<B^Xt zt2Y3qW=$vs?ons%cwwbH#UL>U6Y+3{s|SleZXb>fo0Wql<zPBG5rYDU&H*EcLKo5$ zX?r}qLsp(HvQyh+1Fj5@%{vUJatV(d>?#b1AR@S8&kn|!k!*VleOIa>r>HeDddbGD zGh7#8i}ZM#um)C`0IC}CgC<8m#lXPLgRAf;PWZ86Y|RZQM`L?<x`(B0+a{c6(@5i- zaDv;UhEQonTH5{?Yf`gsavZC%zKyQo#_3%9DVIHn*{6JTcaek85{8i*#GPi|sV|cA zrsJMUHehzf6|i>+6{TP&->6)vVMF$%8tqPv6Czhljs%AG8Cf%xG3f*9idj|N(#th# zx4e}~P>PiPI}O#tCz>n)CYOoz-Y{OtjGr=4i%<uGLh$%3T*}=U(4(y~R;Pc|A@r}# z><U&e*x^QV=b|Sm1xi0+{0G-D6>SAgH4B5}X~L6Y$#``K#7|fb7Bb)(gN~a(iCu)2 z>W&64vQw-pw$aE{J=Y0M@OU)1IP*Y`0efxQEYK*$?bYx*`!awY9}MVVCq5Yr-NQI$ zVfL9*lGl>Zfu}4MJIM)xjA!dx?NDauFC;jPZi7rCcn7CbsF{Jm*lC2!TL&;>8D07( zm#4Vk8yGb`EOIFDXxdd#f9alG2|!fuCSZIA5OcwC(vh5ra)6|ED4RW#2ZFLEfJ)}x z0YCE8tQtPmw54~+BL_)t4JI6VhH(a*#@bY(r7;&lShn1^H9z27jRm6{5Dj4<=4)5@ zT=;;43Yw9)KiMk#!!fSt3cR9cL52AOg9bdAW>F>0qA>sqf9d65xlv|>D9kvBy@pRr z+aPSz6&B)^(pJ1arOTobUb=sjgU40QrK3Fum57qYo`UT_ljk`k6QN-bxJFzj%uN~W zTWU-gE+%B-w?Vt|c_$+gn1&c&*VP_A-Ms(Me+lZDhbEb3dJyJJhtbi8MElhb$6z{y z_}m8Gm>`DTzzv9)5}{h4R!k?GC?k>Ftm#LUoY~=d5Z32U>Gg3VYgt^87lvzk_)&&K zXKZGN&;(E8m=X!e*<eF9`tC!wfV(w>LchTY|6bhlD;z&}tcC03a1G%Tk&E3>@fo5= zVaE=45|=&>xS~1n7`h7%3zb@Zm{KwFf{YI)I69%URb1*ta9A}rYr;bOEEO4H;CSMt zXqJpb?;3^}pZ9MmsG>q7bclJmr3lP+$H^&Pm`5xIhg$CrwsZ$u64#at2n@j;H1Fa% z2CsgDh;Rc_A-vkCUR*&?9;U2$jE@BF*3}(Q4WZaU3V-)mv=l4|k!h36CKtdr-=)k{ zf-c<ifi=Xka%a?s8Kyf7K_0LnBu$_|VKtG$c6Or_Vh<qU6a2jffRdWoi~c%fN}bXb zXrFp+3sgMgg(bh>jC;+X!`>J&xB?@Y0QYfkHl6``+>*qR1SX`lV|?TK$#X@S2(&z% zG4cR#tF5?KB^$CH>!QJ2SYT~~J!M8zNORfc3=2oIFlP*tjl(tN0B&Lpz}EK{HBu^Q zSwcm)C9?yJst|t-43xu8uKh!l0f!E&gl9LJT9XG_+$7}untsWrk3C_z$b-)<P)MH) z*7dPCo%i-29FKL8IGr19<p4$6H%(b`trk9S%)%>j{3U1uWg;RC)<+CfF&9(kS9{Pl z8;~73i@3shi(hJxlr1WBBq;|Ic1U2mH-d9goLsUr;O@JyG0G_}ZO`c)z!#aOT<=Vc z)^MHl9foEb=VtU!<PEwWOFjZg>^0G~b;Txa4p0)UK%XPfU;r>nNGWK5P&^bYe*gvW zkyeTP%mqZaOXBI<VK0(w3viJR`G8wTZ*P3e!%sLWMFH{7Bp~`+F0rr4QXaY_Y@u@~ zVVq&h#7rf~3L7<=S8w48?}F~Y2x7)jsmzh2t!G9#U|MdEnUI#a2jK1EeB6-1S{bMS z33;CpE>S_VVP}xZ8|_|?pV$RM%%4lBnG-q!F9k!ogRF9-uUMf=>rg+XK`jY}cLt9S z2W;?si+~M+4+spiSrKt}KJPT4m82V0y}PG<y{!qMd83xaG80>k4I}&6ih+9<*K=8^ zT%uVp8U7QPVhVEYcUW-If(9+1Sw0Jqgci%yh(%;sP&(5dYvjnzsM7`Qb{i$<rlSQN z6&D<)(e|OIDGm0F`8w0=aLF^n#O_)rPpzNmB4n%mgtJBo+kV{HPW;6-1jEh`{DMxv zX+52`X%M(oqvblu8LP$QzL}*-4a<teKJN-VE@wp^hTBxk$jPALT_b+Ln^)#ILLdPz zE_?jVr8G=5|9$;%4-%r6&UMm67F=-oC**Z)<vC{GKpIM%J#_tv{FEwM6dUEN9CVP^ zQ36iopP}$H+vE{5UCSU$PNDj)usyn5O9NhgZfH=q1jHUAIXN~5-Sr0;5K82wxMHfr zgWINAB&A|qg95^`yWojQl5SW-+WBVpKfHv@WOO%p2G=E7A=uxHiE_|muhF*n8_)`g zshy+T_Z5;?xG<ufGLvBsRynN{7{M)q<ZUGm^UU5NH>2YRR1vk;jSLZ&Wd&8nF1iJe zU5@!X?%6JMPweeso5m}#VWv5_BM2;XUd$jmdFtAx@0KP4b7al%a;M{S2?ED5vGU0= zE?M+DWlK<Al4$Df*oqGeIZIbX^Da+ROSkK_+umw~&Oj-k$K9ky_Y_oXMS|sdV8gI+ z)9)s<H12_Q3MM{n!tE<C{Z8{UeSq&svBPMdmixHsu)r*(Cr`fpAx^@mkK6^xslo+y zLQ{7EyKS-C&&@;(C%xN?tkdSS-0Ef3ApD9)8Iqo~r7Q5MAxSwPkO`NksnK>k`Gcik z$ro@>Sy)T?KVS}C5kkk(t^m#vO}q$d4MJGOJF#&I6l`^A)n`iQ^<gPPO@w8Dbq6ij z|1FD~5mk6|O2XO_58WN)$*Id|P9E6iSI#?=?&-xAiwO$EJtcofaL1A)`#b5yRwa80 zcI>^1CHnxLkl|Mjtlus8oR+96Dr4MP*OX!NO3-%%5&76J_yP>O&<<S9vt^Jg$wQd< z>vm7;vsJH?RMIC{5k<%i@wapZ*eRQjUlvCVFd9ye&zt%u;WERD;^-FM4xyX8(L@RT z_VsWZ!U;A*6F>qGQg<t)6;LsEUrfo$1#K6FP}a{!N^ZgU#>KMAr3aUaS)Ar`U@IPX zP_z{E=mxIP^!33AmXMFD4hZY#(joXlG2^Wy6v9Pf`}L5npo<S(yCX3@`>vjz%@*_o z^M+sr?p;{LP7YR|71Q~KX0jA9)URZ@6E9dFNh64rY00nvDA6TM4eVtyg1j7H`{W2H zqGTy%Xoxq!LfV#z6F^kUKL6WB9~<pPlin0Y8srX}WtJv(lK93&BCpDXd===MHoRqv z-N?eRhZc-3%!O0>6vN`pT%sOX$D8y#Cre^D0)f_FpS3Op(cK|5EJR8TQ7$1vW+Aw* zQvM@CbZIFNLK8_&-W?35Cfc*WFwrct^~DVy!xOQU<{GmOQROu$2Sbz)U~0Bs=}6#r z)*g<vKTx<9NcXY@Ri5tA{p|@C6V#=B&D_G@A|n%dDlTYl>S9!Hha%5U)WqcQCkSO? zr!w)=6{rEa6QD4apX&qiHOA+}GEut%Z5y-<%-C3OSQEn9<Ox?I@u#cw*UdratguPi zMXYWH6s+DNY;P4jgr%(;JJ?v?wI)W113PpotNej&KHKj>OFsDSQlhjnl!={c-V|oM z)qD$##Z3DS&O`e)>@C#Ny8IOvUQt;rj35g94J#mz-LM##MjbgLif5`+aXg#2T0zHK zSh9JTDXj*wh@bqj$7D5Spk8RvH<z(cG9D$73tGrSQcwROLjrOY9bU{HANn|ER(OTt zDm~aiLw^tEGL4&@H)_rkPf7i>2WQ(jB%#ok@g?Xr5HZBCFd)$)x7@uRbGR1uA>{x7 zUMF1|VE9R7_}PII)EwPmD`;wZOzpMH1|~U-_{6qxekh6Q4+G=&fesr>LBb!>N0vnX zJ+ug|$&jF@-n)V--N1<G%Tof1hhv+M#lq*)4FYYM*s9wNhDc$=O2*m#a8KLJ?D6op zj(bUq7<bKaZZLr_tonFYTJey^Cwx+?P!rh!An9aM^M%f_;V!v4ri=!$6SET?Q^b~f zj7a@l7{dM6<ff^L+R*7lXiF<@<dof4-s~X>1;gqniO%a#7{|OMYM2yg(xVMBGrE!a z2EE7SgbW&9rv81@n=^W91&ruY3UUvsl!81Y!E;7(hf7|Q;0MeM9E=|3c)#QZKAg^J zNY9K@yJ)jK+$-mFkH>x@zjz4rk`g@@)*a*ks&+C_`$j~ohFe75vHR*>3}?}9bky2f zAX_{Ch=$f(H0R)jrhe0pYKZ|VO2JprT*J!Ly94DEd=r-|yMiVg#v+@95<Jn0Rm>c6 z+6TLW>eRy+473ysx3alQf$8AhQ~&t!_aOo8b_IKzu@*$fYmr4GdDI7Mosz$lC5Q#v zN5P|GSSaqZgfSnvfV4>_J9&Y7UmJ8iL;8PC>dhzt2I|XJpZ>WGM}C3mv%p&Q<c^9k zg@f5A@fRM^Hh9=#ja(jj4A%@7{%Rs1GZuxdICmBrv*ZZ+3>w8jc5JEml!RpnQwYzv z1_lE;2LtXSa|@P_#jD}5UBn9;_n#r;V?c!L2HKWK;YLz)I=qSbVsX1d!Z)}}*PgcH zu(`OK*21=p2%f*Fy(7T8q(04+u@1nAT#{DeB$FA_0Tcch)$<J9ZMf+FaTi-6z{DY` zbYAdz)IouArPeeZNzKdp%|7&_KgG`f4qku4-ybEQeEru_IJ7oWjjG)ED+h%3p(Bp) z(LJTW?k}e$J0)SlNw1reZEO&Rz=tzr1ndxs2y!c!%{w9Puweh$vIKPU^A$vdhK|ai zM9>=>1H|iwXL}8e^}?Q~<@kr5WHOymWJ!esgt#%Hx32)A2HjbU==JGuuzU`9Je;Sh z&A4a}@(i$w?5UCh{#X;+{K_0R^z0ROEk84)O5Fx<F6hk+-rl|Eyk#{D<ON=6qmdU7 zbdRp1DlrBI$dRZ~BA-nuiaFNe=W=J15PH4ljbDx>dzq1!0Xnq9hZ}TH2RA3>Na&us z87#f4g(F^AHFAdtqh+WB6qh_#EQ?Gp?o8|SAzrBs*wT5;@Q!W#ItRe4)-suxCB+O# zAG^l8-3$<~)GK`P@fFLJwpMT76SXz<CF1Z}{DjeY3yV`aIKlATh6Fel9k<CGH+|b6 z=*FN#FsB=5f(x1|9>qLBPC2MFwXOlFvlR4#a<F5gz)T*W%mCDwsyB<6as;ilCow<( zen28zp-O(iL7nEQ)%Zu}?!V9xRO4M3jEK&$LKE1at4s?fZ?s>mEfk5!mN_GBub9qh z&5`jRvMZ=P;+3nQeT;d}*sctWu^r`+@W6=^%Eh%?7OarmEag0-w+#GPo8bmU3tHsa z=tXAIMW@o7XOU#5E>a2~szfc|qC)5i?8RG>eL$bx9j=SD$tB--*>lOR8vN?ifKVZJ zoLZ_#@UETSo=WEe7Q-^Hx{`5|qW1@-d&Ke6a#rHw0K&vo>Pw&+Hgrs8?>l01vO%r( z>+pZVKIgm})Sq+h+rdZ4D+&|sQH`*XuXvMKDs~wb%16AQgTump=R-k^pfpKWPG~DS zAZDKSpcrW>0Cad-Oe+Ou3|OQb)T=vq*dn;|h>H})r!&A}(Z#vwcaN-oGn$TA;t-7b z6Xne?SGPklhM5rs9lXRdS?HP)rtk>`Jhx44`nvNyPo^a5BeK3%i!i-e{Tt2UYWnRn zGvhb26wno~q7~HzBCSsgo-vI=Xue}E0S(av*a>IJHhb&E4=%u;4(D*tq!(7=XA!?m zm|$Q-lYkbWT^%l9bp#7y($Ut43y<UQTymr&Q7AbGE~F_E0H<`xQpl%R{ZOw%B@HrZ zohej=YcRY!u-<-Q`&vNWIrf$N_|+Z!z;Ofmd(c_HsNraG;DRvGi{%kCBHpMfM&C|( zX!rGRn4cG5M@?ET4Okc}G=hw2uHF@-o1I+h$FijSHb-|0lgXg8@tGW?6kOZebm_my zK|xnQe4zdW^N?5p0Gd}Yb{@sM0{fU~hr1k9pqaUm4{AhUwi?#S+8JcygBtk1R#Yx- zu}?Xu66dbDD_b@T8`lZT0e2d0haJ*_CJxi7U3{=$@SwESBru``1GR&Ie3Fz~5CpeH zSD%X$vT74X(RYiE2n^}`$c}7U&mq8U#`!z;P^O3|0HPq2qNQi)k!hCE{LnM>eN&Fi z<h(nO@@XMD{}4zH%~xr`0HOvvDk%jy_I!!7U*7SiP!;pl!(wr!b8(FpqO=d_pTzJ0 zUIp+&vGm5d!i}XQ4`4aQ2c??Bdh2ov%~$;4Lz@~CF5vC1q7%hVIBqF5%n*JU6VpeK zi*YYDym5(REnw&MO(K{`Tk|ro#nUi-Xh%tOO;s?2O(8@2Fp{+l0_e>>);7mk4jdGm z_9xZ}Iv_M)1sz>M@!`ORg^Z6@CLXH|$#KQlG|q59YoaQuMZzb{zVC5^n8iREM!L6P zzh9iTC7ia5txDPg9-#1Gy<ofa>~}i4a~em7fys<)V^G=}(M7tw=>TUK+?2`@B^%^^ zpws~#(vkolch6I|q9q~g;5|0;d$(ocL_bn9m{LPRov;k};k41iKXz^0GIj=&yT&&& z?1<aR<LgL6aE^F87~L_hr*J0%Z`eA78A;^ssk5D<1VL{4!~@A`6+xZBhUiNcR=#ds z;*z5l66j1>*0d|NG@~c>EX9fKM<OeAiXaN&bvK;N@$OX6OWgZpAh0GIMCN&-#g-iB z)u(nT*NDO(iIUiU@u4YwXoyYB(2MX2)*o^uS|R<SBmNbSk^||X6cikT=jIbM*&=Ki z5bD(taEoB2Ah8tiVPEu2QO6HfK#6sI{A34w{0d~yFe(duSCef*mc+&pR?6Xj0zJxT z;#p3DQ^8qjVVJl|7=oKAQxC<%G}W2uE)en9;Alj5#gf4}z(jI}ri!bzT77V+ket6J zu}VKHC`bn<*ti!D3R@7OfKV&uKG=<Yd*q`n>1ivL;HSizS|Mp<B9tQ+bo7M*1ox+` zelGc3H5fo^i8V<Hhcx&46QT<Y5gv!UzS{hn!v-mlXAU2jMcZU!^*(MS<7<ZPFpqTy z)~i}MK*ppi_9i^K(-LF?lE#VOyJ%|C3O1sSyJug_np)5ewc(2ZGvQUXvQ>9OIl>#p zPVr@XROKP$V>db5A9th18k;_b24FN()a{g`6&$|~dji7>5YK%L2~C!XU9f`UCta6} z55H(NL(4%6N}l5gU9f}c`L(A0&M3wsNq10$$daThsIgV(CX{(@g)`Jd4IRRSgAerx zZhwOdZ*Dkavsw*I8x+y8wV*z-+S_Tjla0Q<V9J;oDntO2OOk`#R1?y+3PKB)iM_$= zV}hJe;hM0jh~=_muNE6)CkCn(p1ZKPfwN?Xxx?{K9TMFJFtc@cLbHNJhJ$VzSB*00 z9m2$EozaGRD*2|CcFJyi#U-v5o&>xzFoJ>P245!nSTY0tamfh)%VEyXre*5(dU$Bq zq+A-Ba#9g#uIby_B}NCZS8myFW?*z@|3)*_<jCLbx?$orqAenIEzy9ei-d81B#iB2 zdj9=<(a>zh64lE=m+qhi^@`%|47_sC#mKcu^C##=?K327IpI1BOkxFF0EFx%A#Wz$ z<WLV0OK`0MQ*Rt*2Y@?Dcy*t0uz~^a14ELC_YDPW18S9!e(EDXu!5<9jEG?Z7In<e z-K32B&WTQP;--yczVq}KNOEm>!l$_y4HF)-NS`ifqOSP;M!XDrjsUenomb7Vi3GXH zl1rBK_t4`1Sl?=ZRAkwTZ@Jwv&#zKOU<DrUj_qWF9}Jrx^JgPdd0(DnF*LNWMoJ}Y z9dnZdNE2QM625Ld=x>EHYekx#h#U9`b>@4@s)2U=xchgEyBk+>(XPO`HygwzL^?35 ziLZxCOQzf5($?g07P5!2fS1((dNb~$j<~W*agRIO1Ck9@_ea85?-*4NPW$GvGI&vJ z(r#YTkj`LT8x><9Zsv{FpO7R~!3??#3BzFkLWTCZm4zpOgM{=O-8ybDL!2@wG*L5F zl!BVYyqa-jWGPeQ)x>sNB(WCnP8)5uoVfHSDFH=7TbT_92w+YCQxif3elxzoCJ)LR z(U$iLaXWF!36b(?Il0m_Nd==GvRjnYNd2q;D7<Y)d}?_8XSCr2rP6)#I%H%+|2(Dc zm|7o0yN0ku5+sX_B_t<g_9*NQz|QQ9W9~?^^zI<!pN{hF=FS0D4gdmYH%R2jUIj$x zA4l*hTLltJK^s4mfDKrb>8F)%;|TurGILe)Q7zW@_Tto=C`y_Iu_gXOlcx(vq$GpY z3IEs%Vmey~0xxTXyoRDvrfg@lsj%RF;<Xr`&Y;~v>laQiuk!hXin)knu?O=|?2*Ip ztjKb)!u;H~i&L1%S_&qP|Go&woC%)j2&z2#H89*|pv$sxGyA)J$Ok*j05?-mX{;kg z8cY^8O%rK}02tgmwRm8jy_G%m)*jTj5bHpNySqCtH%B>r>jVtKl)jC8fV!Nk^SD<7 z@(@mQ(}T^NDbwPR(BY`w2rni^nNv#73?_`Z-cp3BnGww9;AvFg=jcynjY^-IY!G_H zJZLmA+}16=jHcFnq1+CshP2VOOhwi+L!8y=#_1+IGh7j_xDU1Yj4UF;ACI$<7x4Nv z#Fv}dUAVz-z=n*Pb&j7ui-Ku`p30y**DYC!e4#~PRvB(vA#0_XYQ{T2Tcl=6tHVs~ zDR#)vravLi;=nXNxIy{ta-^c=N``~KfK#BuDrG>}h)PP%jBFcO#0e{8NarKP$y2CC z>G~WS1U>o{ok7Fb0${M=poUJNk)@b%b}A^~a1rrXwgr-UVYu8zcR<0*5_uz28xIE- z_0%;?G-_UAmZ;vT6-wtdBhsBs&49h@5MFf#&wyN}3h@7&mqKa42tzY8z-E#GVDpE3 z14N}@ZT>`%Vhai5;uMP21eFi9;DHx;+gts(8&O9TPGeMg0$^Fi7e!JWGj<u9IoD0a z9W#7WmnJEbinKo2E1A~xBb>h+NGS4{cZ?9>#B4k+V+WnPe-|UB93+IvQARc??{OI0 z*{Y9=qUh?J`cEtv@sB+gWrsl`jqlD#%gdK*Dz;W^xyXxc2r(^KZF!XSCXyqk*5jGC zD4N^Hzu?YPd;%xfA0>1Du$8lHQdTS&&(PFhiR_Hz&toS*hxY<ep@Am`gDwMt4hqTt zvA5?<Jj#qSOi3`Xf|jD??mJ+i%-4eM>ZBtbrY<RpfRcNU;1!H=madI*&{l*-Bgs87 zL>5AQJ4mH%O5hO|0ofeY&+ss(OCRm*bkLv&M7KDhhfM`jgoEi%u!VAjsvojbuGoJb zcFVGwQ6pK|uFx9EmYkPiC2V^@oR!nNPotT+{W?2?CPK?RWArT*GLsFQwc*8@-(i6v zY3e1^r9)WIG&yUTeJZ1L&?z{betoX$B=KafYVM+<+AgTH5`bU1)-Z>kbVZ{l&Q%Vg zf|*Qh2vcZ?zto25K~0hxmOkA9z!>gNdyYtq8JT#NHN&APqiQ+N;KRYV!qr2c@ciB| zE-3*jUdU2&Yv2YR4Bcpe*rY4yqDANjFJKAau;5rhtQh*I9I#VJ@{nnr>lsrLt;i{+ zu~4JiF%$uATgc7{P$KkiPplazZ={O`hJ}n<h~L;*4yu=fFg@^j7`=Rk1=1*S$_w{} zkVIDc6?9Uqirk<&xJXu0&TV3&P^T^?MI8&)Eixqb?MMuBpVWrFWvnOz1-YY#c117y zWzx>V4#}fq$+Byr6d_T$kxl~}!a@3-c*KB*WQVechtQhBBc9v?j(h8vt7Lh}Ra(lO z5ER<{{-MmMH^J}&=TJa}r3-nrulUpq61T8)IV{vzGR`46tw{!i3X7Xs;(Fl3Spgki zP$BNYoxeWvMG7o}&FiEJj<P-xOX7rfEn(F*Spk<TJ4H(YVZ<zagGNgV^kB!-V1C5P z91^~=q$I<_R@kt7x`K9m>3-7`kwU=Kwc~%{-biYNgmp}-aWC4Srg;$Ma?SeVjv0<A z4xuK3r^U36vD|V&%YmWgXJVKL^o7=-k}nLP%DqurbeDC5JXw?QD$uj;i4hj(s^iAx zrmP5?$dmpj1%M^`6GCOWjcjDf^tk!gm<3FbJ9`Yy%Y=hrqb!7{%197peK4G*?U;2M zUIQ-&ECuZ&D6HNcJccDU+|(JzOrxDFOrR33J)hb5i91~qu0V;*Ci)F`FzO2K1a#~? zZTZBlg6!nWad8Iy*<+ih7)&Od;v!u7nZk~vVk6m-$jYldyI!Oma4sH{E=mw`&B8!z zpM>RfB~?f%7#~dWD`i~2#mpsPkaXaHZPfU=osC!ynlKNubO_6+tv56Iix<=nj$oaG zpMC>jBm$-7C<O&ZGn`Z>6neRQx`QO92lVP@^1{^}K;XXzphVW52}-~yG84nEt^h-8 zkWExrzBWK<JA-00aLaJN6B&s52-i*E0d~KpaLVperi|$HN`)md!++fuX2x{dx47xy zB{)#oF?oY2N=H>gUZ(9oYmlC*unjBd;;{I9JgT9g6{kHIBwEa#4QI40G6H+Y9`z+~ z+jYjVxi?DwJftj`LE?x|C%=@3G`qMiPV5qR_6I_xac_m^|HN&hR&iWJ20YSYZQH`m zV2TrchZPdFZxx(23STH;V_l^e6?YlrT3Cx|)0LG%Ce8sLXe1qLTKk>Q{``(tlKICw zf%)4(oeM@Yp>2|(0?T=KO7G%rSfv!)bff29DSS(U4hjHxK!?BJg`Q5Kp*zUTRncx> zhdUZ=<y<#P4*HJF6~tJh6bzJuA!e$KYlEpy!7#mfOtP1QCtyMxzMbG}nBZ(QWqh$| zK3qyODw}!+d9yP^>()ldY-R<m$cV~DSKADlM?Rz)uX5E*oBmeBNE05izDz9Kl2CFr z;99H0LHY!=lz71{S*!&sw_<rXSAZ<^hFMiui8DTK1TWgAQCUKaXm0p?35KwQwz%lB zD5L~e-fbxd<Trv_u_3vkPqR7pz~FB((wzSbSC}<CQ+t;ULKwq6Zbd<Q413qg=~I1{ zXOO~1^NaB8GOXcU@ctAdCMxrMP-wqnQ+}5M-6B+>7>&y@J;WcIFKi0$c3K{daa))y zm}VZlKvjx4*oFZhq>EP&oxl(*p-VY%D<rhut|Ur=8)RAQ(yf$BMyB^w>bxYd#|a2n zw9_rEVOyK4bO%m6E@6P!Z8KnQ028w?9n%@AzQdv&+~Ow$K3G3BED9UANu6%UJ-k!< z44qGbm%H6-?6zrRNx3hsif23b?JYET2Xq&w62A@tYwU+mtG{D$mL*{P^e0tn#SeVh z=*W74<mes;gC@o>tq>X-*TVG#%T3I#GLUE#zar7YiGp21!OFZXJvmuu{NrKMRqVhD z2$vOn`^{i58Vh9!5Xj!UoVV3+g0QED<8hXnNw&5~Noc9e@8x=UWVjd=+yX`pI)vK| z(1L!*kT9ei{K5*Rh!qrDEK&~ACz-u#DZrL70nBY(U_|W<+8-x9b3jNR9YX!ojV|Rt zw+&V%9`{Cd+oKuFF~%L%Cc05j=6Cg`@CiemEVlhgY>|fOnDF9)8bGDda}f`~DKNEr z_P}VP2Ow8t6a@Srfc}UI3x!Zss$2IsHbW>zJT{Fs5$cktOr*unG#n}NzDwMT1}z*h z&Q!Pr9MgjZAfJggBO?5Kf#?gxEq6YKE@YCiW!cVuG<!%G(IHvg*|BJZ?ZD$Cp3Qsi z6fP3Gg(;EERni$6N&#};ZJKD|nn1l@QGbsek%${(?wG)oUcSYKE`P%8yyW0ady;g* zx<<k%Y(S_IthfT%^7OFclrs}IY{6n}2z@;7Aa!xw91>qwgl|w}P)M#+GzTz;4YLda zYK}NQALk`%emru@S(s?Ij!;4L2;LdYU*$kF2ueOqA7G&!$J)CbM7Qv~pD?EV;uW~N zAZ7I>bfX<|bC7(VNcSX`NZcTc_sI%(b@#f*VVr*1H;HE3VZ8@;G!rslli%eqZiXoo zb_Mi=O+vU9HcTr)xjJ*ea4((5HYOX0-+-klEKZrS+%}M|?)PL5Av~_~%cch61vVsr zgzS4S{>pTdXt7oBJ0Lyl$`lm@_|#*9t&G+0gq)fh!cz)7o*<-+Rsx#u2gAZ-<If}k zS-0?bP`IZQ5@;xq29(F0_3VL+6+rh1XI)s1!N_Z3`{W61@i@IqRhd#|2J4LaP-}#2 z5H03yg)4HW*H^H}I!5+tk{eq*5AlX!JTsJeS9dTd`K&*GLx)3B*1lnjHx23Wb>`PO zy}+k#cG)Iu*(8Ko@wtzE{RJl2*9RW+^RY)MuxSAkR^@803phiUupA4=POD(LadNfL zk{BK&Su%oiFtYfkCP0Y@%eK*kRtwX8*DPcnISCuIqe^!$%*ZFQt)|G4>?N?J4mr}; zelR_NvctP<lCoG3*poO6S!ZY(1dRG^h7Tz98HL>P4ND4=tS5pbwrO_kZdZd#(BY@V zJvt&opFk&In!?mDW`s<b&c5Zq?dZ2~4+d?-wpgVVtX?)c0>uonl#1>w=8z-h6#l3j z@kt)cGDNr)5H@gTuU#WmuJ@q(c8u{@2-*L>aL-;6hPCkS)FoL6RGWdr#n*uwYiyfr zvoKK#er#ZLX=5@#%DN%$MA02wT|sOXp5GD7T|yP=hifqZ7!rO(ED8UJBA`AnER0K& zU?+W$cw9fcqxx|`(;>mMqt+oz?Fy#X1!Ldt2*&o|V1>C1vsP$FV75O)Y}Ka_55#qo zqJ`rW29rDr$`142LtBO2FgkpNYp|6ks70el&ZZ5Q*4uNQsYF2GL&jOCQ;f@w0O>9O zF&}q2BMEzqa05>*LVg$8i476=fyy=v&EDB=v^bfNK^sNBhK4qSFxRlT6bFunu(>Zq z8ffALc1Q(-0le6JS3KAqR2mTNSS>h^fPKz}IZ^5og;*SBgdC|~CMvFY$UHx?odl=Y z5kS-+xVAQ#%5$I==n76%+xo*K6w9)!YJ`BX3FKAV=!nK7u_|{2%FNG}761Y>-&%EI zh7Ssk8<bCXFep;apU{LZxhYc&-llA4HEm4|5-%K<{TkYc-eSpkTC5?;qsCHDKG;C{ zlmiX~+7+-IOm+p!+lP2zXDk#w-Vo=@%RzyFZp_HIE;D?&-5HHx3oXK1-9L4JjGduP z87uNtdpHNW_IkqLE4PR{%nL3?TsAvBVmis%&JZAGwCk?ThlB~awCDgf>=b%+Vy!tE zK_InpT_o%ahl$Ft-$5w$La_QF?BhBaT?|yZK!*60;I;I))j}C!XkbjsNNIriL+5LU z<;j&@wIJsAEc7KF%iUdzLh(Ff+i;xXHt^M6-N-up+NDga887JELP#E1u)4C@Pzz^{ z4GPKNl)a~$1D>h|T;*|Qp>whXaH*IFi;`E^B}|u|8#y6EhE~uOHSndWC8h}zjf}kv zOlHj_31$6?6^3LttNoE`6$S|#_0}%Yp_La_WjZ@M1H}tEOF<KQQT@P&`NKwx5@4S% zmVyy~k&~1H3d4kD=h-4WXN*LdU2xbQj+?Gq>H;55iDT;M9xIlEpYFh2^*bqw;;@(S zwKBk?9<;{-+)l?uUKf=ia<(fxdX){`AcpM6G}IVDI#cRl@6#xoHgX2>wevmBu$%Vo z9C)k{=x^9tSTyFjnbW`9bDX<7vY3Ih=Q06K=Lkpd2DJsIO4GNrR>(}3v5JQ|-C1Tc zzUHN%#BczK-(&9#OozCYZ8-!koqkg-^ynRKmEHHnppH00iV9WB#WS`CzP<q=X2_PR zrz4SQ+;HPkMe~q#cy^yU*Xmc&IGOpECBup&Q}!)c6HmB5r<ZJJ9CQ6xC8v*Id49Tv zAvPzS8p-;RG$v7S0y}ws_))teirF~^$7%n&5%{tTwJT7#aQLZzj)}F`h~*tZv|ckh z1@8`ML07=&rk-GS4AAPE+CK2%h>s`Zs{m(fsI62u4^HIRK05i<6nZYL-_2n)BPY}# z5j!=pG5=shT4ODcJwiA&nGvsE<O7%fv`TK|W2maI$FTE5vz3WbknNqxhY18JK?jR_ zSh)-qUHzoEPrR_Tglv&J3>QKH4xv#~1|h16Wup~p>_*)?s)>zh6EBo1*$7y!0^5Gb znU8;nA2zXU?K^BJn3czHEOZ9Q*2HzPx*OZs7_vN!#V-FMlRHw{BOzB;FI}{v=xdvV zV!2MgxSc&{oI|9pK!hh?!L(gL<0?j?fYB95@Zx23kR@Mb$$&6~!JOC?s41fOp15_g zfHcQJ9o!5^lrSLtwIt;6&w>+tzb86_=Q!4$hqercAH>~1eLj{*VmmLaYH3%F!P?7# z2LB2>b<kxz15<LAGSu&&|DHoQ=xoK%^@;C8kAJL?+#qv^h$RK>sQ2iyJBaHG?4VSk zh#y-bAnCk<-34_A16bt56%ET*>TQqHetF+YdbFSPDCoQ1p=e-L<D>72Jv#1FkF)2T zkF>(bxqw~Qwz&PG({41gs+Kil<)FstBtzMm%XCcJ;)jww!SRW}@FeL+5~sx6H`Pv3 z9JO2+wS}q*P1``UR9{%zu)7q=5}g;z)&Zf&@h?(OcdWw;_F{d;9@$<KvNzC=Fnlv_ ztbM88?4A&1f1WPVeL~e-!eiP?L%S2${L#NOP8EX<;dvG*2PvFsPV1RqcsAG-=te*Z z$6c6)L%0R}{;dOo;)vgG?lB}dl&Awk1JGSl6kSGq>?!2{xfwnzj94xXi<*5r6}T~@ z7tS+Y3cxCCFlCw@w&Mf$orY1RfrqphC;M?g9wP{q6Oz~kiS_a5CLv)~=j_?>$3G?j zu?Apg44ZHhKg@sQ9$7&?OT|-5EQiRDbnG+y1zyqP!k_tx&Ek~R0trt8??jFL4_(AN zlV8{susrr9@pTXwy3BEWJW-09C_Z78mLz|bxTE}IX2vrgZzW)H8I;AU;he;dU;_+0 zfyj--mY>^%&KtT9O~NtYI>u|OEF2r-yA!H?8-Y6>d|CqZGOTZ!?*0G)<cLXu4f_&D z`SK|Z^+Qt>x*}BJ&rL_%pS)&5iY3ayF^(*@RoI0agz=*b0A&*X?gr+k9IR6ko)`+| z=ZA&yf#b8hD6i5$=6?~3P7aJm!&C)3NaFf613nz|aA2f+LqKO~PJlZtM}_*VVLFA@ zlmU$<0&4U>frz1H2}Z_Ap4ddXrUl&mPLJ+}d&|IeGDp~$4on*~W}RFOW2b(&TMKCU zu`of-!NS~kenqVJywA<i-{Qr7uB%h^ISd-SR=+^cGt3ZLMbAbqMWv6_c25|e*x}A< zC%THRsl;j~Xo>s7im9P7=HPIC5cHCZ{wJI3g&mCll7gU6igyNX=FGV{ZG>(Vv6#p^ zI)NgmnE*_cve7tXHjcD47Gq2t_fXdcY9f<funeeS-|@I;|57)99o5+cwLcuzt0uE+ zyU^l)^hIM6$~XeB=3*+}cR|>F(-_BIkG`OT=nOtxK^2@aUn*xeJ@cz|cwF&wNk=FE zqOxdHtAf|1sY&AYjlvVtLXAapqjxT-M0MXz;j4u4^~+~7-c1e~+Jbzsej-&HZd?^h zMO+&0S!aXujPw#};3haJJTGTJz*3rXAO-%XMif(kSd&wNXTD5=<8`$V8B9I{JeOC! zgSkCIvWu*M$yIW*uW>4X-2wX$6IFtAEC-MV&ncy$h6(BJ<SBI_A@pD=WAEjLL^LyY z`Se0PS)3eN04pFekrr(q@gKRkf%NDM?9pLE<llK%TKS~5qif=8*aqyO=yKgeX;v`z zsZrI)VSnm|#vY%#MYFVod{C~fV?c}YcZDYT3MhDIppk6#V?@hj9F&9AXlOQ34z?U~ z)g34rxZ~sdZw_pDzBoj*P%bHSgtxA{WcpUO$@-g7=8Xb6bO?)?5IG$A+i;&$Ge|s> zLdNh|MYLeI1=}o8hJrg_2MZ)w3y*ab#&}dL<22S7rb*-(I|wWt&)8gBnFMPgBaRL1 z9SW)m^3$X=C%gIT+tXOJ&jou5*ij^~bsPNb3J4mmnh<ct(qKuW`k*$Y2<fW|RlEmE zS~CC#=3!7}MG*%jT3B=1I<L#X5Q|5Pl=XncFE^>X=W?9r<~RXY6%V~l?6HInoj#dN zATE&6%$)SpvAM3|@$#z_aL?6+oGjSFSvq&vr*+91<(}NVlmP5@I7GJ+ilSP@@z_hj zl5J!ElnHfM*RDYIj+dZe$Z~Os@Pp}daI|g9SnhTc-$=7$Nl*-7MY;GsqATbU(z>q* z_b3ZyulD17{3NSh&o%F%B<p|?dxxt!^R8FK{GIM#5H=(;c{rBn<)8o}+*!&276QwZ z^hS0XBLM8$ygN8}{c3Uju!~;w!UT8cgvY%mTtp(;LJBPVd#t`&^^|shc5`})qvfh> ztSc8>oi=yG8E(iuQl$wUx<gtbd9vJHKoyoUX%clvtdQj6om^U)qx2NK@tWgqsJTpo zhLT-6gbbe2<)lcaZuv+a%cn!=9u95XEl*=4#z-Q<7DpCvAH6}Q*~&4#!y1!rXL*Ms zoWHeEPkmGC2y&w{b`r-7hOYo;8cA+$Mrg6@gyuFUP$m){9O8u5<>)I#QM-i2c=vA} zQ~s!$o7f+1*(x-=0mok3$Zh8&zt;1){1?lBh2x*&`>;cN0vE_q3idD0BxN@TX4`qO zY334{95ryZGjL~|C3>LHQEt#Je9FX-J;2mA3odEQ;aNZh+Je!yjqb@;3T_P2(OQfw zi)fskS;V3NEcbIs4=d8=jC6aa3=PG(>44^Uautb5m?l{6hm3%BVu6r9F?n`#M7C#H zV>occtD`HZS%R%n__kB5OA)4b2}wRu;Lo$rSQbbi?GdI&N$3DgnmdmP6!hLa7SCG^ z69h7q!Nc%=pGnHZ7|~j|2b+7jR}2j;_<ltci^r-l%^<kB)lrqD>nEkX$^tfC*n+o^ zDcTgVbK06n!C^f?QeOpOu5^_nRlx!jE7%fL**{?m3z2P?!lC^U>pni5gDknM)_R#G zMYE93(*eA(_ve_WIR3gT^m4!sVzLy}Kg0|5W0qJiPm~B0=(_6FcLn<!*VBT4yO0D* zn5ZJ-ELICMWQ=FU0LC(CiLPN9L&||oq>tf?C_sJ6EQnl)%|?*;TaOH<LKkSDpr*Y~ z4&s_XiUm63Xdo}~PzSoZ`aEPwMIs>`G`8)9hbhfWdz}P;iSFu&S$9WCAYxNdKQ2O8 z`;>#ijpUA2f@h=WD1po$>gXB<Hu+&f8?nlsbLOYIdv;0;4(t}HGn*gQ2m6clbITni z*hv-71!@4`Ek<^l3_`27fi=f`_eD)&WimXY^>GG=^Rbpl)zBGKF+#`~BzaG2v~#KA zP~@hFEC*lVf|i8BuAtwhsxD~Qze5$&Gc|XI5iRmQfzP*50!}$-cqAzUQUdN$F#ijt z^4BP_{ZctgjcqZudGgN=dvRZ1fpxc&S9zm!9xJ5waYLI@7Q_yzc9a8{pEb_P!<cm; zWrPH}lNHp1;>v4<eN0CQIVfn$K84#j#sOdlKF|h`K+ey}qnKeM1|*^`w^Z}<vCO0H zu*Nd^1zEiR-KL`j0ORE#MKeqak`uv7Xcl0P^n{A6$GhY$1lBQysx!*BDE;ifV~6S< zc{A?;uc8#(I6@a;!!RR=2oNO0zee!L@eUfFBOo3_W(H`!QT96Qppf{!xXS{TdRtb# z3UY$qv;diMA=J^QwHX3;UOy$e1cR4*4N`64f^bGDppC~B%s4MElqXUwC4Ip&oQre^ zQ~Xd;<i%TdRg1LkK4EOIq!hFpLpVdhzQ~1w6?CB^>gMq;ceLmttfRhMcvN4G8(QDN z(U~affQ#sz^Tf2k2=^%q=oNlA4INZQ@ZOkiX7#wy-7YbWx|gHKkNSueUPg3TUvOE> zJBG$$`*Jf;L6f`<2<M*EnY$Cr#PdT&2eruR!)YBlh&;6I*tUVPL&|PoIt1`Ik;|Ee zMVcA_xa?nx{z|CBv4$WwX-fYlqEkA?F>IcAWLsb_vrXXJN2_|r4!SUxbEp?3!VOC2 ze#2pTg`=RWT6<VSIjY_y?5TiD&BV{zKGaQAJ$H($fzMivoi{0ALDSVhgLa}i`54T~ z2+h7-v0e_C)7;|EbxU`kUBYts@VO$~y=J68B#-OH4P3%h8AeH=Shr64<sY3pf0qs+ z|A8M|Jf-o6nwg)spF5{D%XYz_L{ZI1t#xiaK->=M(Ih*yOF2l;WmMn-=lEAiXq+Ga z6HFGldAK_KPlW6=xh%ta(*?;Z=ESN-0Q6q&P42Jg7$-T9_}>=M^6GRO19m&~fY9!k zJ!1h^8f!c^I57V@V+67PueznJVw%G7en)v=-&%D#(|vp4581JWBvp|pxla|cD{doV zB2R14L`yxmiELph4cvg6h8PmMGZY^uB={|~-brJ}A&#onjPuk2k2@1O2?-g%KfUYg zkg&xTuLWUMLI7t#sPg-j5`o#w8XYiOt&F_K*XclcnqfkNZAD~I9zi-jJuH*h7|^KL zK_zUc*rUX_JBFa??Oo(ciRH1&N*8N}3GKlt0UaN!@DG+O8N2Y5u5VDPk*b}O1i8kd z@yWY?xb)@cR*hs2r-@BAu(xfu5W7xFiWl|j4A$p!LWvdSz--##e?ps6D2OH;z|_~h z;%44v43t=m*d4H={iIVKl@AFZxcfHbfX--0W6dy#JAH)cX&O1jHY?Sa?nkFUYqc6w zqsRH3&Y>pIO^lJIt25B@EGD%v7e|4)_7%j}9FUl9vg%t&Q}wPenx*cMpv+V{(H8VC zh4p}0A(3*XJd-R2kvuykHgF9cc%v5?Ve|rA)<qjjh9oXt>ut#g8<WQ~tbI#>7j=OV z(^CwWZiqJmhipCEB+PO_s+RA}`PAu~x;{)qF9qd8NfZe2QbK=aOGQcnG&zROK*X@1 zWIknJq9l|*n2FvM?9XF<!W8m{V{pf}J?2VNLQcaA%;PYdr%|~1(C9&O*@ecu7#`0x zGDNu0?+#%k!48`EpNuV$?sN%2#c#yba2u_VA-St-=e-!9Lfc_XO#14sA)Bs(+xH4% zR^wYgmX89v1#$`!2I;&7pNCHYMN+*v?db8l9qBX(zz!z~S$}gbc5I=M3z}qnYqE}5 z!WiS2vVycx=nF~eh-<2o_)SeQOxcpxq!>a$)(o9}8QDhf)Rv_afK~GGyvUN@o3TTu zRWji8b6=rG!-c2$wmYo?FE?tMFhRvQi)&*6Hl-fB?NB;1mE7Dor?-{nU5*WbV+Tuy zgDvHtt5>RS52OoF5rbQ<?~e^qR#&to5<S>h7Sk>nZt#|ZEihug$jQ%d4iX=+Sx}CF z`6+dI6gt`FBa;YIE{(QOSKk@w9%Hyg-xI`hZfo1eO}*Z5qL%}-X=mxYp~54nxJf+9 zR8C)x2-VF!as&3*@N{_%u)2};zDu0)o?^g0ZVDB<j3jZ?B}s76_8?00F+d9Jr0TnR zv3f4>Kw&{bhD82Uiqn#OUqdtOPhYlgl~s-tMw2x}iE?m27)pP6hFsmd<F+|4jjbXQ z$P$SRPK)v2z$th^isZtUC4Q>}{?-a3mS&i&Cb&N{fRezASN;B>V@=FE>W*E)M((@= z3ybGALorW{SMwlO5E3wXIaP*zZE2!Jte*`+r7K#O<Ng&bG~pzrk9Bf$M}_A~WK0Bb z!9#lg*G;(aeJpea>p}=06(lJ4C>V(O(+%_p%sxh}Cn^-KMAfJvo_nX!pt*^xyoWO- zHrS6bQn%QvSC@uI){1(d&{>`30Abm7v`OB9uDT<isdFOF!P<2fqr$VZg45Ur0H+%3 zD42!VYO_a;A+h~H?hA@38jJeQ7@j8?w+4@)>h77!>HP`LKo+TZy480~o^~h^&)xxt zs(Xnl%;gqk!1d>9Q&GHAc%loCE~yluaQ2Al_DD>Kx<Md(f{-ANiW=R<%e+dyaqHLK z{c#y^5m&{e7Eo0}C5Bk?4S8W(4H~DnQY&7YCfOO}T2SrWH)OCK;<!E>Y_X@#yZ#XC zf%%D49aJXnP&0cODEDCC8m9e67-MEvFh5ep7W<s{cKWKC&lX_@lz2{h)2?8C7|Oa; zND|&UV66s?<m|8-sBp!b^cP-%%d4K05uwZ{rP+*ehPhgxHg-mfbry}~C&C$vz=`M_ z8o67!1P_TOcnxZz4IR_!qDR0L3(4aXj%ajQY_jiT*oN_Na${OU3kQMD+bG?g(*M7% zb4#-0$YJPzt)iEZPiE%+H#TvT0EsGjJ`^5%ELrNl#o_}vfD7>qgs=2ug>t7<um(b7 z<nNtm{{Mp>5zA}|qm0V|H|C}nNe<90hlTL&tlSxd1Ny|5;ECcx0YaeFDBS5{Vjlt+ z-SPZ9NloaXNDhi3gI${%+y#(_=v5>#;8hXeRlEVl{;Wl6CVEJR@PwA4w|^Dg_m7G- z^P(`DuM3NaDg<=m&p1c4q29<qX$Z^xD~pC4)f=Bma(+mfo1`?(Hzw&nb6SVS*sT{J zF*Ko-z*%$z)ntXZzR-j3_29iK42bpiWrQ~ZfHK_&Yv`G(esrKc2M5(0RD8GY62=fu zU?bK1wPm@y-9eE^_bNk!`<pzGA#g}&{JUQi?iX_9ma8&#fHNb$%@W1MZ?B?Uda5m} zH#UCW^m~tQL?<F3yMf8pu^+%Y<{VrjODZm@BI^`b4(uLB`Ii_G{v~WHrbIo&48X9b zZv)(Qji}Sb66f=J!K<D?*2GB@AOA7sVPp5qQ%#pxw+78{L^fb?yLSvu-VlOZ6o)gt z$Q8PJiC}-5qwX&{>&H@0-eHO6C)=$d9L$);ETvcjH)5M2yDBs?wCn`?%5@K;a<~m` z74IPvY1W}604D5eAHeDqJCc3mM{lixuu@kpV(9Fqzw1|H7XsC88JOQvFh071f00N& z7!bz}2+#1m3}@DjnLB~Y*fQ~u%EC%<{*fHaZTXm)j5OCLnr+Hu0RamU!2~DcEd>$K z$-EQ@kPX3k2O_7Agru`YpE6kOo4iN3Y!dO#3pnH-e>cwo;CoHVb0&CKcuB5<Brezm z***&$I3=*8SQ|T~fivA$f&I-**UqVnj-!5(%j{Ez<`GMW5L=ujPBZ%)<Odd*VR~w5 zMPtV_aFD+Z9-Pk$e$i8drRvyZQq%*jz6FGUG7x*UC9AWAUBPG>wlTH@Z@~FJaIP_o zcdt?~1P>L1(Ufjzyrkcel*_|3H>6iOGEN4951~#1uIhPkGq6am!`NctKI-$@ndDh| zLLnlUW{bw+e5q*T9sT&SkdJVK+%Mv$EvaEhSc*+nVX-2Vi(Cu3o9Py^(>p^3*C)@5 zRDk%9@mwX~gDP=$C<#x@xbcQNummGvAan;yhJ^MS99#f4QIMOfTzLAvt;4|y6H7WD zYlQ87jSOV+4YG0pFk?$Tbnd~j%1B15*p@fMa8c3FKvo1|-AQ^Nw3rK`e9-i_f@9c; zdL2MMb!cSca@)m3w^L5vYwY`<;5)`(P(MK|vWu*eNz^lr>PgV5$TV9`FXXH#Po%vu zE(zg5n344!^kdo@tFjD~=5u6YzF_$bs3>3|1Bd3Hn)}iv`Dyi|^L-D`rKO<e#pI>8 zu$%+A5@8+T2^^q&3<xE~D$~Rl>WZ@ao#Ta})W9~n((GVG7EJ0QA=p()1WTu6SG6i@ z!$`8MqTnWndPYy;YQ%aK?|xOFZK-OQLi<lvL0%2e6)c?hy5EhRlXJV}l~^b~AF+39 z(yL98&zI2qIntBuXG9$?D3$T~X)XPtOdp8-L7|a>0iE~>eE<Ba7}>*Pry})ghHDfv zKg3VVIHg{avd@}fiWbA*Fl(sm{Fn&v{e6#gh?x3-EeqeZ0sVnt7g?N<`FBGG3qE}v z92mX<dr7=2Z-VS&ZaK)cfFI5Vz>qpfH#ISQDT_m_kGHiD%y=JfLsT4vkVI!EIVfia zQu)bYzyz6AGmoj5h>};DbLq;vE3(LOK0y)jj*(cb9f7TpFm{*RD5tk)vz{<~HGzf5 zs|YP^Wlqn+^>P-;{tgoZhbDFjU|-J6MDV?Si6P+$1@}g~5ZGwT@(^t5CW4I-92p6$ zvG<S=fP?iZ2T4QYVextE1kT?(T%qJ}aI>wDkZXuAsH6mR>6SSh^qPS+v*p(&vRapD z;7m!jJ?_6DkvGVH$+PH1q-n@r8J8$15p9&OQq8`6x9D9o#H8>~)+kB`;>ik?p>3&T zke+c8HE62i(O}jyng4a*@dmeVV$zrkYD45A6bzb+xd|kIRRqsik5eV{y?iY~!6aW~ z{G#{JD?QN-koOXc2N8qCTTspr0<UtVE~(dg)97LVns{Z-_4X<Nkp2X`;Iwc!=SRCs zLVN$WBtS*;WTa!4m^NJRZ&Ubt<PXrmCaL5FNn^hn`}-eukg~o5`IJir-5toy)LKMX zKd}ojg!@h+Ut3CEhZ|x%XdXlL*?8F>_%ez~7eFI7bz4C5?IL`siE`1IkUNA2!&pqT z5iyC?cjnCRV}E*V2_N4DP%CgGRN<YtmN9qJ&AY?RW4<EmMdp6Fb&W2bFC1Z4&dbqB zxzl-N4;v$#peH6BzxFN%6Qm<A1so!oxwG;zy<PO>FZ3bwV@F5bFaGTcDmXY5i>8Sk zeWl<>>;el$hv*szD{lVux^vlJTST)*Eq-O9Fupe2Q)8p?+yRNm*D=%KJuusFS5k(U zn3t%7HhVTo6|sqU0jb9O3;*gECR+>p<iOYb5x<C}4p^0)!3Me{(i_VMs><|6llXV0 zFf@r^y2`r#`9FGkng&wWehZkzIQJ>hLhkE-?#KDyWBvQ<a&4P0du#4gNR#6!oYwo> z46hShB!BEN3o>7aYSa$;FV^h7-)}^}cELd%d19B~TtJ8p=I%*y^nCy+|7QEJzYdZ1 zPQ=-;m)~;Ga#!H;p($}}^*>1J{*!L4H8}H1#hxvq?D+))StPoGndQKGB#_;P$O1xZ z`RIp`)`WGBk2gDnS~I8<iS7^EgN$hd7HPrm*id(kyQB_Ys%tY`ViezhF<H{&k92`Z zC}^PUZ`cb4f05r~UA@($?JB~;5&U#5js=^pRWghc0L90vd>0lFSeKx}xr@df0hPMH zDt3dbteYQ`7@J*YHglY7?B|MH92(81<+D#zl0r=#WMfdJBw7XvY0nQtwF(bqzG9X9 zS?Tg}+q!aJlGrF7Ct{Q*!drg`sRdei<d9x{Y{^n^Yed7x-~1<3AWd4AUbluP<M;LR zUBQN=Id%mnnSKL$a>5e{yKcyrETI{m5<IDaH2hi=39}(}p3EtR42HR<2lh8$vr9Pl zyC$V(Bf@N3X0UoW=%OmrwDu}O<AT+p_prY|_M`5X$V!PIpO(286V35F+20k?^H$6D zD)#mwwheS8bZr~Tss>iIcLnpE$rJ-5v`FD_PUdB_8b)4$Za+CJaCbjYoPS^NKf~z( zVxI%?pnpz)39B&Bb-ev5$l(jWgSk=JaEOmLfPo#fW|(`jEMQm~_>XXhZSGkKmsRTk z!jF|##yUioR75RwJ{X`H>dfaQ7L8*(ri!s-x)3IFC=e+q-Eej9lTC1x1KQIV%2LGY zXyLYba=*AlpR@!<jO5B2Cse_iT^JbpmBl_WHQX{#@zJlCg-0st%!4OAOJ(O9AS8>1 zmo!!G69h$SOt?lI*yJ3Vni~wc5y{3wD*t{&21Kq|g$c8dXt!>wFe7F-OG3@8QNTi? z92i=5Bg=i8Jo-8)wEuvdb^rP;?Byz7=<KLtzt-gkx+H=jCZ_a>t#CDHEh>W3H<V+1 z$Id2cj@W8(Y>VT3!5?S9yugw$s88xSICNLRy9^1>4=(=~EE7AUD(M3E8G<^hGhGc& zdF}D}@cZDwrRjD(BLiB1*5h1w-#vhPQF;^$zN2~Qm+J`83O^HdC-R5u!iMEU#p@%+ z{83VZc&l5_Ppaw(xGJk#l5e&g;+y=0U?;8QEr*2~nv4*XHlKGqYo=y7IQ4aA$P|Va zaqnqwG^ZF*T<Z&kA@GBl8NL&@E<^rkl!RYvp=X9WL120~XnyaHEpI}1OWZ#u)G<#i z7bfCgIB`a_drNlCSTXkACwovR$m3YZCCcY6IOIo{Ad1|zJn@RyE6H$_>>0>BhAxs^ zsl9T8ez#kLBn|Bj)+<}(Wj`W-XZTo$3&O}QIxb5^QnXq!4h@a4)o|^3c?`uAgru8n zppj;=K2ibS0XN>viYO4Mk0A<n#=DcVT;2}neFCUS65(@eX~Y;3Xn^^rf_z0Mo}pA! zJn?%1tu|Jgp}1?S(uXi!X~E;v;GY~Yz%b1uJAwgmLX|u(%!i9He?9q!%d6g#Ak`(u zGptF6us>ch#x1xcMwt)&mrQnSUHo4yqpWH6zzE}C*v;I;_8xEJkXHWPlE)H!vlOsZ zD3XId#RN2SU1V5v-wt8jS@Frqp}SP(SB&?Pa?m5Qm>ojA9dSDphX|!0Gtc3Cfej1} z)L=lYz+2cu=0NfchhSUkyITmI!IZK9pc#b;Nr`L1<;FW{p#?42HSHewAIJU#B(Vzd zxPEBrH9ZK+FS_?T`5LY}t!lieup<D|!;qP0?52F>3`+&3sE}156Y(%<4Ex6r*rJCe zL-m618nnP;<avRmfbzuq&mdzgkYfElJ7D^GjUD#)o_p}Pv)^wWBB&EFDE>vpNbAF* z3iCll7%kR_{`?dybqCZ{Q2yU@l`%mYaw~3vd(Y1cWUMslhOP~I>(H~MrLoJ@HIv|@ zn4|z&cb0<sR`N$pQIR%-SbDBkd9Jv~aRbdNN&!BpvE3?B3bGu`Tnl6=IB#B3EpkmT z!D`pEwEeoO3zz&ofVVDmUl-o`urWal-!Z<rgBd2=+@}9Vm8*}HK$iabwrZSvlm^t` zOlDuv87IGC{u`XeZXujUE7XZNCKe&d%hi_M!ft8OJuR-cw-(<*J;9$g7#99XXV-E- z0kUsH?|09)<xD8-!2)`fgTYeJ6SHkK_beB4T0v=Q%6dWfgeTVN5+?<=6$@YUj?;gU zc0{F2d18?rf{6?X*OrDg$sO~JT;-FeI#ENVe4=GUbB9l58x@$U`01JTZ6gaZr;rG5 z;pb>l2?OX7`AECP87e*#4Pl);j#S^pR!DyRyMu6vAn}A~lHCDLy<veg5rrvml@Zkn zJKzx&&TsDyuy>39Py~^z+=6c+PDNsagta81wd@cs;-)OwBkFFEaa=74X`Kfocm{8W z@RKYW(gzn-%Ip%N984q=VmSDZt@^{jk&Bx!63_7F3usDe>m#|bBPrM2RS*-0(o(_| zo8~jM#J&dpH9!!udyE5O|FEZ_^4L^+@7PcJeFp(x_d~Uq*F68@hyCT@vH91p7u1vR z6X2X}EgyAqVJ4xO9AOsv{)J}PdWx}Q<`XhpLyqP_*F7vV(E5bo<)!SWNdcVHmqc;p zu+R`rIS@3Tslgg9zh2hgL@?keKuBUglFG;DquJYu$xUBpn}I?dE*gUgh}6x|k_>L> zkdE3<up;RNzldLTU7lwcTX{#{MZCs4*M?(+hbd=(1&UGJb&6z&n2;2UI2XAx#H89M z1sf-a>D?20zWD;<!EDLCV1veS7}+)j{$THALhYG@uH_)+#zVZeCU$aqXjmw03=9<m z#KJCtD@9;B^19}i`Rmc2D486T;>SVzMX`1TScXRIHl(_5!IsRAIhoa8P0F!Yu$LX_ zE#qXgU4~~TcFwSv!Zyc`?}jdD{=+$;Q_<IlNGhld8Dv~tbO5w??nv@<J^_)ZO-vq@ z^t=<R;@kN4B1ou%c$9+~nS5%r?pGf>XG{x$$O_LA?2XYaP=mlIgXW);3wYm5)h=SI z=)(ROqVMA!nO4Weq{8_kW`rLh42S1U3P408mCasH_<p58W8+X{xGq#E?y7%gd>?s2 zi|{yS8GILWNpoeE<jZqVBoCm8(SJg17{Yx^%2((N*cA3;#PBw{8Wj$(QP9a8y(@9b zOUBtI>=TOy;K_9%mkFv~hTFNG_n<)k%H1X}T$+f<GC1CUf4$uS6w8Y`r6%QoN5|#z zyp-cvfJ5ut;@lLM2qBVT+Zs4mP0TSogw!n-q#_CJL##?Il$cL~BEO4;9%RWpLs)pf z{DK<`hY3iRFK=(TJpB{4I6wTuf=hyXvRzOb{HT*%0Zr?MjuGL5p_p1Dh6O)=8&CsF zWO|Jk0!T>6f@!$Q8PkSoGcj<3Dt1Wsf<VZ@5Tx=Dlrl{4zHo5qs{c-08=DHMmMVv~ z-d^j#2OkEJ^gPi`0yJ5@B+hSkAqhfju?>DeCM1mvO27ZY0c6KY9#zpO#$MsRch-vN z!rBw@TCE48;T1(3*W4u>KYEy`TA+rU=iV+EB7NpPeKLiO7A;O&9U&6DB&?GL=A$U( zEwZCQq^Bk9fVdkD4FNyUz><}?u@QLfBA)~Da3+=th5=$ocQ8e^cqNMiU37i#*1-L! zd=uP1vY_U|&1pD8)P(|_^Z$!`5^lsPoC28Ie~WHaX6G`&M6A%Id|G5-=jC>!*vV@I zYRj7VBd$*g*kNh(YeEID01D(_-;hvbB0Xc5uv&^J7lSv96FP383;HC$i_@LBv*#b6 zLs!><f?0=tb#8PAV8o0rCBURCAb;i7<pHovrPmxw6&`}ZX*Go6V@buHHK<t6iwscF zNmKO^IDwgh1%qmrip~2P-Qc)$YM6X+V^`0_F@qDn;SEr03{=<N=(Gf{R$g2E)NuDF zg_3bO&k*Sesps>uUxhY_snVL0$0uFNfiXUHGd;S?ZfQj#Qc%&(P8r2%FNE@woxqj` zSJlb_gNV!AeDOm)51nm7kn$ws+f2#<Ws5Q}oZlDro*DS86f6=Xo$&I7UFPd5yd`jz zP1OezIgrB}<zNZ?eGBhozq1q_XjY^)3@HoTNe;ohoR1)RN{x-WF|bZ=f1bjosAT&D zGNMzu``C{4&wxmuA!&y6LO$g-1%d~g7NA~FEDk~vF(tqV;D-tZrV^3+0WqvWvRKi2 z&xJl8IH)m%l{%zBgg*o9R4jFIW|%OFy-t}scLPCUY49WPn%@P*AG;LFCg9FAOc<O# z1|A7~Zl2IjOr$oFB@|N^?tzd<_;--<y^YG&AUJRE3|CL5uh>|4=hV^ow5)O@w)h1> z<K3qym)D08RAi$*Qd)DxlN;9qg8-r8zd#D~!sh|MeIlh(oQzx*-w!N_X0t2_RS%3+ z$^q7^zjtx&6pNf0hL{*ShK7k@0qd~^pZ*VO?WYFaD=zWz3`sDY4z`Zu_8p>J9}sAQ zs(ABJd=SmemSf|Qy+OD&?L$WI;!r$dO*&#x($4DESW6a6NWFcc@&luZmC-)PWLIx` z2y!hMCO8cH0xbhf<14u;+CW(t)`tFrv4?0aE8a!Z``pmrE6E6+<jg~lpEM&yErS;N z-z$|Z(8>p)>JiI^GcE*yaRaRkUz8OI$%3nBq%47eI~R2WNl6Qq0iG#t2Z`xpb-*#G zb6uFwV-aWh>`W+#fRlD)5~#PX$-ygQy4>piM2aYP1zycpXa3Jgo#?UQNDH~5#Y29@ zSlRwwEfPx(SgR*S(UiNeUa#a`g7LVAB(lN&ia`N5+#;67ElCUevq~fr1R1RH8a?C; zPoXI`IXrW}bdcCL;cu$1a`5=6;VW6B=a0Iag>qmQFnaxP4YD*3w}oiG_b9@C(>i%5 zYEuB{dT5MNumYm_-anRv9Ylw)g#NUnbUrUpSI{G{z4(>J)1=wag!U2M1jn2XDCek_ z3)@yt=c=JREIO=GfcvEIz;Z}f@VNb*gld|@LHwO9i{QlJ!aC3KY#a;=^f1lO?f@(U zl!nL052Dox9dfDS{oRa}i~or5#@leZ;PQF7|CK6;a^T|QDJCHmFLb;zY^Jx^cDCJX zrATALezI_xH5}==)O9J<&ZI`TW4r*BRJ=47-X?^`!l3yCs~})i6e1V7Bv9dONnotW zUV2E7kJxrPy(=cG*@SXbC5df>*5L70VTmev%1Ug#LRd11ZHTJ3QqOiWae#PrvX_Ic z%M0Z4$KiGd`~G-*Vi=-L8gg}9a+n7%h&e^2Mq~JdZ>Q1?;;n<rj!^0NA`4uJa3KAU zQ$L!dBOSqc^G`yjG=iUlS4NM*>n#8AQE_kR4Kyp^NL)&T(|IAU*pz66r+ea+x+s<2 zDKlBTNHW*lU<s$if?ea^@{-W}N%w&HB0*{gcBF172Zk>!9=1bd7{WGK`R9@Rm0Jn` zP#pm3w1RTrUMI(xD7vxaEfu%*+?Kbz&WE?D`MB?}UMwIwWND2>tV6riaE0X;lau*i z(y2Z-_?kgmenoLkK&X*Ue>;PN`{=0gU-!qsLDt^BuMk;2;WHpUEi_1ifTcyci`6ko zB_+_Db%;hbTvzIn_3Fu21(C_yommcf!}dF~oXe*}SRqeL$Y?gpAb^>i86^Ll^0c@# zO>_qxKMr+D11AO_0MrJZ62&41M-B}Ab_p(Gq3`id4%kos`76Y~YnI(XlmnF>87W3x zmI&p8G0By3QjUh~4j5xsdeAt1r-T5KtG_t7DAZ3T>y99`Cv``-0rURF(Vuqvc;Qc3 z9d4%b(Wronbd&<ieH;7M+j--o(D5|?rVP(o#Y%_`F2BHomPVvkvW{4NWv)EFJm6^o zpw$NT_M*6W2(yi>!xcxACviUt8d8!Vmj4ZwqzW^krF!ZK$2Sp3R)eSIJqYwjOrSfg zuNbKA7j}9}?iV%e&;|sfTyRhSBiuKn`CZ*hLAyU5pB4y6L1lmC;z@Z3IYrNlLio@J zPcu7X>kKlqibcc(BxDa*mU@(f=dDbxu>sGW!IVy63mI$$=qnHLq$dVolx%Vu-Kj${ ziTQS$(v#YxjdGv@1XV1L{}>pYF6fu*Yjx#-fa&4Sw=^M-C|eF9RgkAs2ZSj&<RSyY z`4}148PxCuJ_K-u*0Ung!C>O%Jao_nFn=}j5@2ui&cJb$uCZr?PLp8uDcOlQD#B0s z<YJ-aa^bcR{oPK~BFXItRPSUj->QvG@W3W?<a_qM(DoAaIR0IOnK`<GC<j}RNFy=< zy>v<(S2WCn{+%J6@{pa|e#?5dp&VG+VUf`1WT#iFeG<Wr&@UIY?95o%7_RJK;b4$G zZ_B{ny2Igpzu*BnK&QDJ9LRUp6S71~zdI6bf^V`CW5T@xgI+7Q<&;n{XLjk)=tw!> z=LOe=5F?K-LA}2&jTz4-S_58Gf^lHNKZ(xzWLz5=!-GH0`|xO<_~Fd|+al1=P^BF7 zu=e@0(?8{)+#TG*so~yqejn{$NAQOo${$$WjimitcO=iPu`AH?LX)<kOIM`b0e=*g zaq{DhFWM~y{G)A@0@9E7JCpTCV)+e2_s_hMfnKx|;FDeCf-q%fq#-xd$lMvM91a+Y zyztrJ*9x8X{gitg^Tuq)uo@^Uf3Hsdq|s0gG9X)Ho1aK%WLG%xS>PqEV8>MONp7iZ zAjj?DMLvdUdYUBLn-(s<w0wmG&(mn|7gw>k5;xFD(>RIkr~Q-D*Xd+0(;n^?NB^uq zZ$4V4)RTR}RnY>@<(icLPWEF{@5U&Bp_~#L+JI0QR>vo<uFd4KL`DPg3th?q8lD&w zOiRJr(4S?YOLBXcvM}Sw_#^@e9dqmyr+^c8#<;zFEdJ5(7Sz^TlN9@dE&Bt*DzSbN z$$#vi`!Efk7*5O4>~Eti__jE;1U!UfF2a*)<^2&Kl%&DMU{J)|-NM)O<aM^>&Y-zz z!>b#yCPm7@Ns9XK7h#;z{g;<dT=zpXPpAnQF`QQFCGNBd+nTjZt~BPYw)9@dzOiC= zfc-&tC)Sg1dh8P?q>2UaoWCV!JM5EsO&QV^sLvfO0!I%o2UUQH6>MGnZuvH>H24o? z3AfxERP5i-djA26P71KE0-9pPP)BBc#~pS-Mp4g3M6400c>sc#G!6O=|NeRD^c`5d zG~7*raO9!wD!OYpGx=YdDXALu9pe@iP}3UdRSCR01WpDb&$fhg-7^jT9pjvM2=6ih zBog6yq)VvzVtWk{HGB%6QZQs#=$~>hWq%;vCRZ=x5^X9`w753<I<boOpi1s&#FJt1 z7GcMDFaO5cKd#6ogr!@uRhE>3f5H(ofTbrlHp+prQVItIJ;kilsm+aJV&aj>Gsy0s z-3}rDI0a0Y32iXB{~<Aw!{RD=Sh~@}8x$6+Vr1A!VOdj31C|c=YqkByeRdZ9>|?&4 z;sN39z`tDiSXibHjE$~9%K(qeHYJB?WqL`&i;E*mus%X{S_O->B<vU8?&>E8!t$L5 zL*S}{BAeg^NRXr8hta96B`5>xO$Q|IBf8;@sY+VUL7At;AL)KHY*6LyO|X|crmquh zCNZ-SQC394Xsm2U2xz3(mOO%NFhDozYsGkHB^-@UT5C+q30)rf^5LG04^Nf0wYZ_T z?3`a$N5;KxDG4pSEl*scZ}&Lf0))^ct(W6DrAUpXV5EjGI)r(PjSmR}KTh7#*&X!7 z+h~z)z+?r||K1r1`_m!xkPtk{PCD^L^PPboQ9VGRM9NxjMY%WVY;vl5GPE-|+!KuK z3MSS<wzJybZ}G08L`D#eNfLWNnhfOuzsT*P{0a9K)Nm&sJHJb}9CXlD&`Q*r{NY+7 zv(-yMl!JwHW&Mxt04-_7HY0-AJJSbF9FQa7Gmh~%AW?cmn>iy@+Yz5vM3L2`XLQyQ zhP%QeS?K~GY^Pgv(C(A9P#?yd@ZQ$FtGp<e>a9ADNe?Bx_qQ1tOw3u80LBPf?Bc{4 zxS@wAfw4)jsRh21?nLmn2IN<h-GPx7PVk?W0+xd*JA)!-=9hZ8%ZZ`nGl7`$us7bR z99O4~m<xm-J!x|VP0=jQ3$9o$=n#g05H`95f0iVDKrZzNFscU(KXwKc`+ZH4>YKX) z%}P<J(FlcdG(WLB$iRgs>5A)54~x$6m{1)eVXd}La*|;{Kzrcb0nkwMATwnrwAX5u z0~+j>>k*z%BC~dIg?Lwn$#jf;0auE@U+|XAjght?!>j^dVn}f@3<4F*YQB>@I6{CW z`obaN+xO?dT%{a<G(m^Btzd-6uAoXMFy3V${y!+|7W)513;8gKClD@B-%<{y<Qv2L z^v6(BGXE#FdpI)yc6XnbcoR0Xq4d6CxVncklF)hkVtmq&M0z4ix<JiZGOV8jsFDx} zYm$-5Ndzj&!vbQNyclcV_>q>#ok8vf)Y;rWtHd4`hPS<u$MqPVKc*lK;SprIh|Ho$ zMR(6bB#K*h2Q)C$kRc(3{0Kx;JA@MX=eI=OkN5;D6GbdC6Z`rP?umV3m&?c4UgeKE z7<u1Bm0V*(e!sw@Acs{`)}|P@*S8d)<Si^+3g9V=FcpgCfG`2s#yw4I$-hKDljZdw zN&?-!C(%fMce}-Xz`@&XLqo99<6~H$rjPi_?)F&klwy~7PzFrO0{4rI$wXULLEc!C z$HbLHJU;euWN+_Olc78z4BQuJHW|PoMkvIjxMF!{I7!7~g0I_JafYyw41xj5<mnmT z2TVI@X_Nu`W3mxOIS%3(h^~Yrf{R;CaO5VVcgY<IF?P#YhP7mZys1PZmWGX;WHk+5 zB;a7iC)L}kBNm%2q@(ic6rQXNQxX_7tI6^QuX9|~Atg0SLF6+{*)OpiEGY@pAGF98 zc@m0J{{s?oVraP1@Lws2a=`9j!;Tc0tNlMDiR~@G{txTYlY5gU%4DLEpy3(@)!}+S z?I$9ZHtGaV3&RH_t5CkLJa>ch|7V;9j7iFbFe%WWi5R(u$IbsY|D6%ZbtnZ`AXMyL zEAHtuq#7_L4fhM`K)Z8fpP(h)!}81~kiY}gpAeSVhInZgmj98pdh)T4J7`Hy-~^qr zN#NX7{@cuDODraL4g-;qSl{Q&k@?1+8cek^RSmFgxqXr7Z48_YA7l@AxuDnY2!-yf z@!E8i5PCP}Dt5t~&J}-D*IF<$BcLhZVNPP96poHJ;@WZQbThjy7zBHirdt!oqFx$| z&`A578KwwsYx<ff(+fhtj&<Ub8R+|?T;{+)wek^6lD&k=PZAK8bO!zJ6=sSKp>9lE ze{Q-X)9#7mA)A)}=SR?PAi9LDSu+y27#O)8yII%uosa6U#TxPP2Iu@`ci@%omO^0o zlER3MUmO=*dG@3^0e@vFpu0ELg(w$B-@b)_!6^ZEvSK-KLzF9(d0D`1cpR7yalS)$ z;Je4NKji?OKq!_w_6a8CAdN82EoaJFcu<PuMjpWcm5)qsArHN6v3M3q_GCB-l1>6m zIPy|CD(%ucr!MyEwT2=2R<Di~d%P7|LS`<Kq7rqqlXh%99!h_H2votldZUOTV?@GP zihM2hYs*RAR$}~#xs2q~l467iU1{Q9Qtrw8;DRTuHzo2z2t`SLY)P1CRVh-DuA8yl z%zJ-z2moV*V)^8CAuvgSVOP$wp+jgQQJnb>z7HM-?cXPSFqN;q{YkGRp!nzPU&Wiy za_R8IpON|jO(wG0qcC)+cmvm_8=zp)9TYDGaWswjhOGkzCtR^(<HIqZrQklrFNQl8 z43cF{j=|bVbhRx*LM4=Grci_3!N6sSC=;7FHX1OE-04p&{}*Je*d=C2>z3=n!tTI? zfkJ9)LH83R!6gB5RbJ$JRp_#Vix6Z9kr*{KO1xH9Oy_+F-`rv!`Gf;vA(4Wv!#Z>M zun{-=`@}X{g%>)613p{D8-JBVzz&MOpl%r4g2FG!g|Da8H_2hz8Q9the?zAjcBB$1 zYaV+T@$M8|6Ps+W6tO%kvLjgXi7wm~G%-5uPx`{jpw|enffN{MvB#%{mcXG7UE8ov zIpBq%U|1+IFg$s2>|$crGJ$syBdmD%Zn6HGfB_a<8o4HnTWA&aVV7=!rJ%)-@Vq(8 zJL!qx^P-v??UoJb3*2IHx1f|(-AZ-`g$`vh!f6IBm3wBGUYJt7LvV>vND-ksG2m_@ zeye;g2)Z+1M{N+o{fSV66v_i(=~azUnK+Z$diAkfi!F4GZHWpswMcPkpnze5xpY4# z_yD;-f92JHh!PqX>Ul?=x7^3&o~;uh&F5%J)&Wxs2|*Ai(M6YZ@lr3Cx9iFm`ydj@ zAUv%RQh8ta1-gPeG!oUa0XQJBhPr7U7#o8rM=%Rq9n`mkl=g%@+`J4P4iN|yo52w{ z6W^ccRJ9iV&n0_<^M0yDeuNvk@<2~Ux`zXL%3rro)-7VsF`-xaF`!s(*&&4Uc?mgf zhaBk%uxc=pmi*wkPV<d>wC2@Zo#-mEvt<Lkq#P8PZ<-t%WoYn)L(P^U6wBHrEirna z5u6p5g;(&RH#+yXdIyDuK>^{m9hIGjB697(h<su+<(qzWG{)Qo98n<dbS-j^;6{ca z#;2BoWBL%fyWxE^IOQlX{C9ZYfaHyJV8x>x%tYSAu`$h1{?9tr%dwfkrZa|tmK>CT z9-LeQu>ZfW(IF>>W)e7gl8#n)64E-%%8}a8_!`BNJ4r~xh~G9|uO@lul<eVQyyM$J z=h)ySZV)T*zfQtaq$Zi1IJx?0C_G)5FI8~C;{++)H-jel1xDxWkqIwzrEE1;h~Eo> zt`RpgiAs|5Vh(On4u-T8TWpT>u5SWEW}*Z_lXT+Z=q14fgfPKfZY%{w2#Wh-aa_Sg z$vwh+9Um_xfat5p<kh3c3xPCVKBkl~HhyB8v<h34%0*VH<L||qrEkS?E=-^+=nf{N z67FpFK>?|B!Llo9NpXEFKa~_2Q;blO9v&To7@5rigz$KKVA(w~wdC)lOR*zbsUfk@ zu;83-NAc|ME>rmeDDwBk8)T)j447ON4*ve$cPyTrd!{?&e5`ctMiN_pCm2pL9J<sG z3YfT5==1NLZ(MQ`8JN&rr?fMKvf^vPv`RXgFAQ-=jcsA}_dT1@hJ*o<W6PSEol=`z z4{ELhI<G1rx(4Pbzz3wHAzo-&icB}UNgzxdO}|!xBd354qAU2m*iAYFV^^?bfuO@d z5pPrbEFHFn_^fCV@}hq}=ylNYf}l204v75;d7`NN!^AM;@_3{iv{#34bxPi9^OGvX zv+ypBj|^#ud}5->iGNsS$4GbcknX6+r2%@S3vgED<!-WH9I|7?;8cmO5HG^wfWX6` zjpU$C>QQzG;&Qqea-F<J2Gj-H`C&3kaZdn3Cg$QHQY42K`8udDwj5geh5OC@2}9Va zx>C#?f(N;FxlnhYS{e@mGdt^05?Mqsd+0`2#q!DA$c~cGB+RuhDGxouqDA>X^O8S~ z#1<@ntzu*0xK|9^&3Rm&)w^(w99<;6#L_!7!@syqGzGjWG%7GP(tXQS1=oeK)8M{j zphQ-}6B;DjIg;>maX?~u*^<`#1z%h43bJKL$e(uxQ`E{;O2dvT!;|*sCceNfy8~#n zKvax0$H;B^{Z6htvHAib9M9|!ng9??Ad2lZG(40s*M1}(2lk`Vg<!Pb`f46T-08eN zZ9{u;mHm%fM65kODrRGvi6l_`9<sX$-B(2Es}86zr$18xGg}kMVj7M>!2zX4Lo#bu zP5nt^#Brw-hNp^F0XY!U5*v0GF4&|Szz}1GZ{hLffnS!~dZTYdD7=TdSI1|ixS>iN z;I>z^mxB`ECAPlyeiW$2>{JJZs=wu8fl%V1U4f_(qf9UzsUygz0>!_DcFY&~Mj#7E z7~0FP5{8VvIaB&f%-kpmfFlw%p7at;kc4HA4+=>n5*>d8YXZL;(HT4$xQKa&>2qe% zJ}h~;EA`iyU;I_pCFC#F%vD4Qxj&)JQR3Z)aF+F|PvvrhRB?&b(eTQM6GIinvJ4E- zA$;`*E&lrCBEbPm?zUq<C-Z9gN79%2h=JlshvrWI<3DGJmh02_$+~a|&hkuy&l*1C z1iIy<^r+(uEJMN*Zsxh<(#S+L&_^cr2Yg+u_EINinn|b^(C`}6xEgRo{j4$Gywhfa zw|@5zj!)k^WHmmK!R>pSzVVSFE%HxzTEI^z4Lg&SWauuzBymVQa!e$zAa({NWxfoi z?D7l&N5~)~Z!K6GNNOdQyp1=u{-CQ0SW)~=fJ<wjh_D|S_?p};*1T^#H&7j+wp45_ zLXF&0Ls8{l=B^~<(VEO&$SY7xa?d~~Lptzb+*JACl6g@erh}J(*cnKa`#*bxE+EB- zY(rgmm4YH?hAu*cE=GnPF>X&P+YL*EiE_a3=Ogj&_D`-cx`OfEDVAJm-1ja;`fSHH z6OvloPf^*9OczHWtK-E@%0KSNs@Dc{-xwT^g48{n(#;AO77A>RW?+GU&Gi%ZM9}j* zF)YUwVL){^2timPHEMzPe-gL8Vj&q+#fb-ybl*SW#~8kgKX_NZ?HO1qMAGhKN&o}< z5vAD*#o3dv3*=V!Y`4P}%<A@9qwP=%J;6zR(GciI7@1ewYdQdoPkt9}d0ZOB`Cyiz z$b3iJ$T#BvOZC3cJN1kd@|?6D@!m6ACNR($K_!(#59AigLL8CRn!Hw$^=>*SG$ymR zOc<Xj_jaNa;E`wjhc98O2jK|$tVW&4QeYy$eV-t3%`YF-vRvWfdD8eloUbCuZ_&um zL;!a_s%5n}w&)Pj;@B9@@+}9D$CniVQNOyhj|qtP;$s<2N62a%P)iyaz9k`~j*X-^ zo*#IL#gR2wsS{TPn7Jng&E0fuSd->U(Xqi2J9=hm#8GiX7&3@GOS*z7l0+QQ7zRfF zK`m(&o(GNJC>gqGz^qsL^uh46F6CfliaWZ4Co$SEEkrrU1Y9?A!?8I^7A8D0PaF;- zzwAGf>pPJqJN<$ao599iLAAW`)ty=Jaae5mwTV>#E(sUEz%1)(nft)<*d!l)LGWWU z_XhATJVA7d$KF!<&A9T=85Fn@GqVQ{)-JLl$kE7S9{BbnX^rOP_hEpB+}Mg2Y5cVW zoR=7Zoddgs=ha4p$Ip^69D6u+*h|=|k;uT#@j!?GU(?NLn!-dG66|U(?ZHC^d1{ho z@RBZT`IJm1kDR8Shk8HZErAfXPZGuaTv14tSCGoUw!EPyQA$Lc5F$`dZ4e_Y85AIG z4XMyL8Np1WvSBXn=nkg(6$s0V-D4AE))ByJ&3Ev<!d2-GFfa^YlkcM)*%%05Y>+{a z@pplu7F$6LWqgvWEZ4?JYFu!H<83!<9!ug48Ib&*sI<5wFekm`k+JV&3h~%D4846M zE}YaD5Ff^j^Z~{4UeT*LI6kiVGb1nwDq|8mzm-J69-J-WKhi-(qZflagSsWEdZz4% zG6{|{*%cu7VuP%*@p|B`m=}d$8tlI}CAssMNGlTeYZB2M(dAo)1!bhXj0|{I;yDqp zYOLbfaUanj7^2KyMh5JoUs+8|bL^jT@QQ5fA0xvSKruA-1CWS;U{ijEZj$l<Tr^&% zOWJSJv1{PvJdHpCT&@^<KzZ5FRzy#RGPv<O1klY7j98;qLw~a5<UM-CEXU4(PchLP z)EAhAY!Rhk$`t{NC+-a<KJt9c5_S;X!SYZrS1MCRbi5=?#-w~&(u1k2kB}mv@#7v* zcZv{WH^5jo6#tah%pUXe6EHJcjzX8yb5ak@!AP_T_Xby|G~~({Ke@eeYZbM_Ff<un zCAQg7JLt~W8!K}Yk$y`?StZiHBc(xTuTRhtH64naM=c4xCC`BE2jm0KJ6Wx#UXAL8 zfmg#O)1U;olP|d^KcSW?y66hJ1O&`a&_a!C!}Ersh(s|I%R}}EOIGqrU!xQv=(_|% z!>=Xfh2a(MdR`^rNj*~i=h7HpVtBFriKjgng7)j*VW<YP?#4;_)oj9@vK0O-Bq@~! zdt(!#d|XqwOz6Hg+Xzv(Yec7}dj>1aVxc1#CpY1dt%BdlU}ckA;hIqno-{hOoFWMO zW61nK@)%`$1oQwO1)?BMPos;Ld?h{n5Yd4)<TR861N2~4$=f+e#S1|bUJ-@A0C|we zUvc6wwMR>`ha`PqV0#gY!zEAsmQpaf_?Hx-GG$S@Q=CxoZe9g>=!A<Rq{p=vbP;iH z&){{<hG^kgcoOqeWH-Xdm?8gLvYcnl*jX<HxXLmaiXxRE2;6xBdz4*4iDBW%7Qy7& zIAv!rvOB2dBTi^JATXymp(!T8rCp-i)E=BG#gC^6NgdbMgtEX7-&HM>soI6O-d*|s z4SLQK!$>f3b?c2kTl!=#g6~EGipS0eky9w4Rh-rb?#uV&w_KAGme+<3A=YKMrbKG{ z!3r_c+3!X2R{04rI^Tx+-ieSf4%kPqxwIp(Vp$Umk_A^e{=Zp732&*?b?Xhz3>`bP zfwBL7HxQ*X{FM>ce8b+l`q2mho%LVwftG^-$@5{z(UPh+2+7~l&libnTiEI~Q5|A6 z6qJAhXCkB7LZ(<!-$+DKXW}R8&5Bn3p)ZuE7H7SH3RlE`zKL;>Cmn~8CtR9p)P7|$ zjV#Rd2tbi}n^gydp5dDt`;mJqCi;k-!HVQHau0*<`vxCQxgv;$Al8dht_XuVrS{H! ze*sqcwd(KFovi8egxA5FW?JxA;)P?lYehMjkR_d465wev0juu+&?7C`AK-{I)f&7? zdW8*>7MBSFKR8^+>!S<%zR?DoBb*--yB|gDr1UEE2Jm4QzcSQ|^gMF&<HDQT`-y>J zjBIf5nh2MoUl6KrmPe*EvK%bn)aJ~j;I>|oe=q^@HHmBN0Jv)5hqc_#4p73ZV|Q@S z_`R~2q$Dt;GYDxdmf=neV3<PZ#;?hFVdj$>4n<4p0M&-!>g}`x^n7W@7g)>;d>_X@ zo1uJon9|~7J7e#Cad)-VTp5~crX5k(gzicSbU>Npi_A{pmVhd;)fF>glCK`$2J^Z& zvm6*TTP+Fdn+67Z=?tFyoAEI!C`H{;dtWt$?WkmNd~`}h&Xzr|k8y2S-w@=LC%af8 zOo?#Y@5GMCYHA@#LS$PJ&a!=C+dkz08E3a^nw?+RCSJdp-%f+zYv$DHuax@X{uhLn zHg=4dyness4TJWLg+vhYE(u4xoxui58W0_)?H`$WOG?mgb3@<COt}%t!4m|<2yJZw zJ2-+*E*XOu*+q>8f3URp=bjZ&c3UEHCOQN_&?kPUX2|opi8f7qOed2WC*{s9G3~vE z0>W)f6;bA~w?FcZ<r7^b%ybFPq=(A+2}(T0#$EYiUFhmdGQ3cCab$!9x@FUEezJ=# zDDXFa-`OaM*#00}<q40q2DMfQkE0u~92Oen(gTCS6=TOIcIWqg;}gu%iTqh#U}`yN z9P?Z1ZDOZ5<VTksLYE6eW{*Dab|QBMeqtakLDCsWPY6_!(a13VO-}CpBSH{4s}2mi z(9<+OB*iTqf({E)A`g9}bycd#dN4RaBJJhiJu$+LlbUnvo1RSCgT8*kvAb9HEe7e) z?7$+;#GKqFhcTeD=efJ{wXm`?=*$S*Nyc7VO2I^ufYAj{gf^quc%c*(Z<vJ^pa*)^ zWE*t=hnOeFwgn4PMGG=$A2>L<bXwF*j0z*IYKG2XxbA>)vR5DLF6SZoo1L#yel21Z zf6~?{=>%C%LW>02S#1BRKvUWWi&St-Y;X#(ZblxwCFcWRO<(BY?n9$cvJJPOOG>6U zMoN%C-#8x)oF=Y=HLxWt128G9ok@+nof<lZV*oc5>ZsL;cs{E^`wR{vSBi0Qs3I{6 zE@=PMlK;XaO-W=JR4<dcEZsru7Db2<8U%Q1F*H1HP7;?0?UVDoWshJ<Ppe?oB|#7n z8G=LDdP5hS12~?w$cV2f1^l#fTr<e<4pxK*evA&|HeHNm0(xNnh4lfU<&4}()aOc> zH&H5yu!6smMa^YmNnjeoTJpK+i9g~V1tH>o&F2XsmJVQ)7wF6H?x3POz~47~4QEA- zJt+TiTIiCqV$$%fOlE6v)+|FPnBh7QG43@xg07c2dxx8%GkAh)!Wzm@S0*(w;UwDj zn$}?ej{R#g@DsZ}(deEgOh64f`)c7MbvJOp&zGDvcg6~bHH#6M5-b<aiHT1v@W)Zz z_ey<1<qczHVtXJ_hYkqkqa;+uNq@&Pmo68EE!gCjq*<qk@%L^$hKLq=l!GT*gz?eu zop(97LpBbML%Yl0vlG~LPyu3K(440Kay_RU=~5Q&i)a!kbaE%l1<f)M_LCy8qDx4Q zpC*l8eh}iOHade%SsqN=w{ZDi{g2b|E^c!2?qWxxq-H>j9HpRX{D({vvx{^Q$JNus z;XHC{3d`T~-d4@GS90T9-SL87ID{-52-*R)m9d2znyt<N=x>z!&T?@783hc#p6#~U zIHr#FdDN>M0j6M-nPtpPPLuNk^#ynG;xyJ1OE_xEfBy-43NJAy4fHI-!dD$4uu~#F z#*ZU~I_jR;5Tv)pt7M7z%Y^OTVn}#AV-?dBN$DHqp)0+X7Do;VEl%Q(qDtQCWc&Pe zy~{&f6gFw$D;51^d{oO_#0UycEb$9J;p+?LvU13}3=1o-46hhBqmkiDLzu!@en+=? zhtNSDJj4<%Kl9g_r@N(B+bVfxgcRdl1)#_iQh-powDhA)I5&TH(fjBF;c|-@jhWZp z=)Nw`8#=Pd!wY+~e0g(!KtTRFu+<y>7z33mez2OYRIDykx4E;6@YG<)XBbs(BV*e( z-YxfVh}@Ov4w|n3?gO~d!<!|)9+$=#5MmY7GOKsOvgM=7L=GaBlD&x+LAEv#%-AH5 zWFpEuu8ZqKPh2@9umuZ_fkYYH`wrKl{4aNmY+NJ55az~9ZgME$geuj4f%;KP&CH@@ zmk>LIoe^$hKnXKzn9}{zX-U0mE161tq;fepD22Hy3ll^A+yTEUMAaIM1Rqq=Y5pk( z=ac6=Kg0wfF8Y*VLBY!(mb@{IKM9-T$SC;hh>sQ%aPL5;)z{VWZE@6tW6?wghjV32 zf$R`?uAzI#j_CY4zQq$(fhkw)jt$^M^K;7qu?*OBtbydyfr7NuStp$Vd6@i#XOYpy zn6^edCv0o6WJr>}cLp_;h>LSiBP|@SO1|X=e$iVB7Tzyu()Rn{!ezmb>D=)mnz*i! z{n6=i9->AhadD-V=?c_2p&vT&wtx|jFb!LF-o1(}X)%$(KD7hV&53B{fuGQOrd!6a zu&^2KCx<2y63j#^j742{X(zjB|Njm?C#z>8Q&m0HWOp!g_Y_*l0-Ot7h;*Fs+ejdM zB+U(BV$#hR5lda7n5!)R?eBdUm>)1=%90*^yC>hIekO?}wZ!t@#}M(n3Qoushj7W) zi>Mf$CRr&yd3iM9C6T7MfJxHm_x+)!4V5e!7Wzf}fh#kNL$)Vtc;KW`y*!Wb$0(>B z0k^&tZXJo2g&}hS59MhB6w(gagzuCW5#2H1O^C?Qdl11zlHI_Vsg{a;0YvP(W$*%L zpWA{CDC&k%ct#c;c;9^ToY);$5^8M0q}<Vy;wJ9HLI*JMeB8}Pj1LQq-|$3FpLv1* zHT##D+Iyxg*PZRVdzvgKs{js_gbq>CIlB-O&;ZWHjbF)AzX?9A^NNp^BHscNr2!Gn zUZ^L2yGCVH&HW>d%XMT&5MgpX)`w5X4^4jCy{5II?!+*>UT8f!ER+I@4vt(J>j!7j z-#!I#Fh2SC7cuge)Lp38iTlPV5wuI|E-{iBis+KGL!eY~NJ%&}GK@Er_x7tr!d)Bo z2<PQ%Vi3dgJ~OPaIQqqL<jHO=`GGSIV#{18xL|q;GU@sFjQxf0fs7UrOAbjNj#l%Q zlF%**1?#ZcQ(ec~nAL0)y%eA$WZF2V3c@f9mRI7n7sLq*;)FTyVe2h#7lV7X`4^LF zDByh|b-z;+xvlp$YIw9eVBXY9M>JcLVL_>A%++9e;}srQzTq}1UGPpQ5$N()Y&)EI zT!nU4@*(6zF<>p=%82#?!&|_DoKRCbw9uoG>)ruI?3RUSVsU4_1#{&1#QBmswK!jP zF)j0Y&_$;-F}~5E8bWJJtp)OE-ImldLt`sG>)^gq>R$#huFq(%Ijl`y@OdD3GCySh zy_44nKpbz0QLGsEm!~u&bzsQFk*Ot1yn!aUO^q0KOPS)tnGO-4-XWAv8Ux8`sXvfX zP$S2U0WCH7QakZskwkFf`1nK*Mk<k=Gz>1h5or`!a77!9myD=}Bi{du+-j8+$_)$! zgL?y7PdL6T?AZ*TK-#c)IGduM-e7ZYLR3~1vd0S!mz6y=1|*dBBV7}=6+9M<h03-7 z!v8(m-CfObir71{m|kHEWTwIg_2g+`A+4V9KUhg3SEXcnQkNjtJ6!i6q3KX}6Q#_B z%stV74nR{>hiB#76Q0QyXJmro;?@tn$O5~K`YmcL?!CBpn1o*!sg3UP=oc|9ED<7~ z*fBhrCo^&wU^Lt4@(v;ZZ@t(j-W9OL3V^EpN2bb<p`m?D%kAI1(YI;Y1cW$0fWQ(@ z`tv<0L{|`}%a%c}FBpQw;SolLfvY2ZO)K})p@z}C=lwc5KE6+!|B=;%JKw@xo$Iqz z-a~`?MyrIRmt>Q#k-26Ya9UE14_J@@13VE}G-n#51|P;HrGOm*1_X8mm-o0<9yn;H z2<Oa1?I0I(NO0H@al#x~KZb;ZQ>jdT`QSxm%M0Imc8@>K8_hlp%4KE$v7u#a=YvE# zAwPO@TG&u=BOIVZ@enWfF5U#ZC7~R8Qag~^3D*XTXtYs{i0{~Fc`&$N6XqK1k#VW~ zi5p+9CMdPDa(&c0iN_l|R~(D%q;w?Kg(7z1DkMt6ghQkXLVA>Bo$!tvu_?ST7_J9} zRJ0Ld1OMOkH87;LK-EK2R*5aK$@x;}g<yXA{4NBrDg#B~1);uwk=HbF1c>k@s2L~$ zeSBn!Gtz*w)l^*4mcyev03w{_y;D?8lIxfJeLbZlv`8>?S$O=gyzPWQq2@)OBA?}9 z>a2dAQW1rx3B(M*s&Fl$IUJA$#BRUB%x*X>FjAOLaff(v%~Zj}N1?>*^Mw34N&pqQ zwDQ%o^>zGC<Lkoiu|qo$G9n1DffQ%-pHnH<TcivQ^OJ1?y91=(6#SQGm)#mx@{Bmg ztMv(C2F(hLHe4o3%OOZ*@GKZl*0>qo^2HkR(w;cQoRXL*c2j#r4|k1G?%|;%g#O3* z$wjCs36D)6`6tyfOd;+({EP_p^fef)ED1Z@RVqbP#CnZfgvbjFc|eUJ;z@(DvQE|q zk*p9vdvigZ9W>I$80|&-5EPDJ$VYYtAgH-|IS}k%E%zh3r1cpVI&NO<5R68K8mER7 z9_S9iwMi~4ZFm4JzMD^`nr5%=KT2LD4`WeI4%y-?ai}%7c=Vs}TWf%yPgroqkRjnj zVv_eKWS~%^Hbi?r&^2rs_Zhme8RWWX&010l1Qiw=j4F|#Y~3r|5C<fudmT7=X=J=R zqhU7M&c<}d9>c;D`OOj8up-voy93}T0&Oz#RoW}rK{GG&aX`dAmKuz>7T}M_Z*K@n zTS>nkxVpZ;Wa#8Vj11&w6{4qEBm|kFgeb)LKyA2(y0{ZL)=;trMdA~a#U0<!drSdW zg(0<wUCA=F-FF4$6RTvB#dKsVTwaU<G7jNsYVrb~?@NMe3|^L``pqxa;FT>c!{-da zU1TgHcKkq^$qHmCX$ZbboHB*Z{4Cv)Fry@-dihlj+JD#_u|F7iXG0S1oZ;1ljnwm8 zw^x1_v<^oW!uVr=GU|y$p)fBozP(N4z&)Y)6DH+b3TQ^2CWgx*q6B>WSC>PxyUqM_ z(q-X5Z6m}wY2CwGvB4R@r6vaoSHgJDala!r#cPhytx@dMkxhhE5W^O3DTrG!r;RBY zZ*XMxBF3@#ks%p92w2udOaT(s$SHrB384<*1>rt`6))(ClU(1?J*V=&f|`y6=kJgB zhXQp!CkzR1SWwb9xUr+=;V6a#RZ?+R5Izj?qwsYh8?5->j9S`9kBM&yVrr14OcGO8 zhbkZ}iY}=#94PVZyba6oV(0#VyMkyLnp_RWr*0^j6hi{(f)Sq@tTEjwZm~MfWTRM> z9fI2(fngtFfo`}wo?tDzHfhA*@T()C<H=y7F8hL+B+970{Gv<PM)YhI58%qXMC=}y zx+8ja4dWy<9~?wL4@T0P1{i%jDh_>7X(~6FLeZZP0oCQ%(bQ9oJGb;@AS>L{OolT- zo!8JL8xM=z0dhE^|6In{(AP~cFkfc{ljQ@9y38>Shhj;Io|l4=p+*Frx0Bfj9ip%x zB}l7&3{6guNn!as=!SMf>I=H3O7YK(fHXRdoRed|hxbN?Dat(&NW2Bc<zR?7s$gwc zxhCBC{Wp^shm+ov5GZGA`;$Q{_*8C&Ev9!#I|J$ucz6W#pnrlA6uZ9VD6l`JphmC% zq@<|J$-zF7BXUrxWERcP9z01y;1XedT+c~U4BoO8`Ai*R*zvM@rMxytbF3m)91({| zAK?>cI^$Qqr8GPeZur32rxf_k;K>xVnk9id`dvj}iVtHj5HS-h+SUx~L2B&pU-3So z%3;FgddMW3F$O<LL8BM4<m;1S+h7r|BzN{aZ#|I^HUQK4eFydt4=LbOv|el`7aDR~ z8`;Ynja`+JfPX%)d{`%6_)Qvsz??Q^5};ynO~{oh!xVnCm+r*w03O#pk~jh`Y=E05 z)Gq~&k&1uU(D-4vg3}p&{YL$$D=BFQ-}>1@(cpEYhnw+9dpwCe<W-zJdv9GCcG1o* z>I#}fw^L`b<MH=T>3Nj|esWnFp11v|e$Ef-X|i{=b8YHDP$=SjlLNz_FyB!IugLex zV51`F^%ger=nfdrGE15mq8#x2%`?M>nJ~-@n#gcIc})X|<@*M-<RkGy5MIC`fww!t zYhophgo`I91}^kRVg_Q?v+x^)mD;MX4HwpeR2&Wy+6vAPK}6%|vITK-caN4~E3-<- z@yQIp2qHnpFlFKG*Zh?S_JKu|0r46dP%Lnlfdf*2hjJ^5gYN>XZW+(U{lSC^wfc+d z{%)xk#`y9iCYg#LLJp2l)I}ZCP=_fc7}H-~zLgLf+OEh^#HnVxY{aJu90dkC??I<C z{|l2K#GRo}10R8Ki_C=5{<-An2|_E~4{<fv^5KK-G4=&L@5cUNJCeDIANxqBuq1hH zNlBQI-2S}N7V1ZYU{WTOn!YktDA$Hn9{Vn3q03HSN*4Nfm5(QL-|N4z1+O$mMz@XE zB<hTA?x(|pzf+fV%R&7=<semxR}>e^{*cm0f#yo_)qZsu9PR_SqeTc^<8FC=I9TZJ zEx5ui4uM4y3t@;SN$Ttbm<$xzDwg(gSW})L=NXQu;l`V9C?Mm=;<U-EvrV|@eoyH) zA!-WD8WO9`TuD^AQ{a7TdU4&UGmncSzMTVS@`dY4h_)MFqcYz_NCJ(@xG+$lJ&BM) z*=*!dpC%9kbU}t^szNq0m<xA=HW+b-G@GvM4y>f*vDJhYV|VM{6^c3<kBM8hG+oNU zk<)GwpRMk+jUTop+bb;tCMBQ;E7kwLe(jA3Gvod-2L=-twAvhxMl5w15b%>?0O)U< zQtSt2ijvdmeBM{aHUmHR4rak+yE6%>Fu8+~!t4%)=#qvA5&BELoaF%Q<)60Edv+e% zd%8w+d^^fbEm4D?_)152Agud6U-6h;E@mbpS;VIzNWn_xt{VBNJ3s2Yf9-{}VJ78x z_qZWxp68u3(1aY=m7buMoI*pc<syMy!oui(+pm*ZlN*HFK4XjFN9PVq@;?gY`sofN zsXls_ph?Vpb{ZZ&R<i+yIn|jHySP9iEtg&0-eWb{o!}Q)NGhy!h5JXq!#GM99v&Zr zR;q&<&b<bASyvYtZp34NG~aLsWY{8q%aiG9Q;?QT7FS*Twj2;5daYz{`g%Ea84Q~2 zlxF<%C&dR<_KG#MN~vg8e!&)KVrMB(@4-koU|b@Hn3#(U4I2YOt63jf7i8N0OH2}1 ziAeq&_*_A-{G?2AOCrO3^OpBWVPFgm$V^YkqMM#P&aR5Hw~AFw4~-|Lv$)dcO{aeL zj$3xK*hB7~Y0F0J&*XK9A8APmwk{<>e8;CqnwIf*0$1}y!_$=r&{C>L-TjnUrmNJY z)HfVeH7ykj_=%{qMTk!g%!1C83X-l)s>rNm%p)%h(^o=qh3Q);Mq~rA1E_ciD^$EB zI>jLb&sbk*a?oZu^9FjQ*z#d6JR|V}G^;LegkffPh4%d-k;Fp(!Kg{H?V@y8mYWPW zGN93KQ^33>QGC{ASm^JPfFbkAlfstKb$v=gO?s<z2C*y1dSRkLsv=0>j&XhHY3W#e z5|KRKIQG~xj?Z7WM3WuObS{!!($no6`vM@zSq@@gC=kU3T(za8=3X4Dmx3q<^)ob# zR4?ZRvip9q((Kc-XNv^GmeQkjLcsBG2kZ58zNQBs&+HZN?%z#r2@h@=bG$zv;|S-F s3x*=Qri}^xL>ef5Ck*N2L2;(SF0#G4gpkbiYmgN8KUId9=vfa00K}cLD*ylh -- 1.5.6.5
14 years, 1 month
1
0
0
0
last-svn-commit-27-g18d1a42 Fix bugs in the histogram visualization tools.
by Yann Jacquelet
* green/mln/display/display_histo.cc: Add new vizualisations. * green/mln/display/project_histo.cc: Add new color projections. --- milena/sandbox/ChangeLog | 7 + milena/sandbox/green/mln/display/display_histo.hh | 75 ++++-- milena/sandbox/green/mln/display/project_histo.hh | 341 +++++++++++++-------- 3 files changed, 279 insertions(+), 144 deletions(-) diff --git a/milena/sandbox/ChangeLog b/milena/sandbox/ChangeLog index 097ea5c..d53313f 100644 --- a/milena/sandbox/ChangeLog +++ b/milena/sandbox/ChangeLog @@ -1,5 +1,12 @@ 2010-02-10 Yann Jacquelet <jacquelet(a)lrde.epita.fr> + Fix bugs in the histogram visualization tools. + + * green/mln/display/display_histo.cc: Add new vizualisations. + * green/mln/display/project_histo.cc: Add new color projections. + +2010-02-10 Yann Jacquelet <jacquelet(a)lrde.epita.fr> + Fix last details in the image processing chain. * green/tools/annotating/histo/histo.cc: Manage new inputs/outputs. diff --git a/milena/sandbox/green/mln/display/display_histo.hh b/milena/sandbox/green/mln/display/display_histo.hh index 2ba0b61..ef47182 100644 --- a/milena/sandbox/green/mln/display/display_histo.hh +++ b/milena/sandbox/green/mln/display/display_histo.hh @@ -29,12 +29,14 @@ # define MLN_DISPLAY_DISPLAY_HISTO_HH # include <mln/accu/math/sum.hh> +# include <mln/algebra/vec.hh> # include <mln/data/stretch.hh> # include <mln/display/project_histo.hh> # include <mln/fun/v2v/log.hh> # include <mln/value/int_u8.hh> # include <mln/value/rgb8.hh> # include <mln/value/label_8.hh> +# include <mln/util/array.hh> /// \file @@ -57,19 +59,28 @@ namespace mln image2d<value::int_u8> display_histo3d_unsigned(const image3d<unsigned>& histo); - image2d<value::int_u8> - display2_histo3d_unsigned(const image3d<unsigned>& histo); + template <unsigned n> + image2d< value::int_u<n> > + display2_histo3d_unsigned(const image3d<unsigned>& histo, + const value::int_u<n> ambiguous_color); + template <unsigned n> image2d<value::label_8> display2_histo3d_unsigned(const image3d<unsigned>& histo, - const image3d<value::label_8>& label); + const image3d<value::label_8>& label, + const value::label_8 ambiguous_label); - image2d<value::rgb8> - display3_histo3d_unsigned(const image3d<unsigned>& histo); + template <unsigned n> + image2d< value::rgb<n> > + display3_histo3d_unsigned(const image3d<unsigned>& histo, + const value::rgb<n> ambiguous_color); - image2d<value::rgb8> - display3_histo3d_unsigned(const image3d<unsigned>& histo, - const image3d<value::label_8>& label); + template <unsigned n> + image2d< value::rgb8 > + display3_histo3d_unsigned(const image3d<unsigned>& histo, + const image3d<value::label_8>& label, + const util::array< algebra::vec<3,float> >& pal, + const value::rgb8 ambiguous_color); #ifndef MLN_INCLUDE_ONLY @@ -87,7 +98,7 @@ namespace mln /// \parameter[in] histo the histogram in 3d. /// \result return a equivalent 2d image. - + // FIXME : display_shape [in int_u8] image2d<value::int_u8> display_histo3d_unsigned(const image3d<unsigned>& histo) { @@ -102,40 +113,62 @@ namespace mln return proj_int; } - image2d<value::int_u8> - display2_histo3d_unsigned(const image3d<unsigned>& histo) + // FIXME : display_color [in int_un] + template <unsigned n> + image2d< value::int_u<n> > + display2_histo3d_unsigned(const image3d<unsigned>& histo, + const value::int_u<n> ambiguous_color) { - image2d<value::int_u8> proj = project2_histo<0>(histo); + image2d< value::int_u<n> > proj = project2_histo<n,0>(histo, + ambiguous_color); return proj; } + // FIXME : display_label [in label] + template <unsigned n> image2d<value::label_8> display2_histo3d_unsigned(const image3d<unsigned>& histo, - const image3d<value::label_8>& label) + const image3d<value::label_8>& label, + const value::label_8 ambiguous_label) { - image2d<value::label_8> proj = project2_histo<0>(histo, label); + image2d<value::label_8> proj = project2_histo<n,0>(histo, + label, + ambiguous_label); return proj; } - image2d<value::rgb8> - display3_histo3d_unsigned(const image3d<unsigned>& histo) + // FIXME : display_color [in color] + template <unsigned n> + image2d< value::rgb<n> > + display3_histo3d_unsigned(const image3d<unsigned>& histo, + const value::rgb<n> ambiguous_color) { - image2d<value::rgb8> proj = project3_histo<0>(histo); + image2d< value::rgb<n> > proj = project3_histo<n,0>(histo, + ambiguous_color); return proj; } - image2d<value::rgb8> - display3_histo3d_unsigned(const image3d<unsigned>& histo, - const image3d<value::label_8>& label) + + // FIXME : display_label [in color] + template <unsigned n> + image2d< value::rgb8 > + display3_histo3d_unsigned(const image3d<unsigned>& histo, + const image3d<value::label_8>& label, + const util::array<algebra::vec<3,float> >& pal, + const value::rgb8 ambiguous_color) { - image2d<value::rgb8> proj = project3_histo<0>(histo, label); + image2d< value::rgb8 > proj = project3_histo<n,0>(histo, + label, + pal, + ambiguous_color); return proj; } + #endif // ! MLN_INCLUDE_ONLY diff --git a/milena/sandbox/green/mln/display/project_histo.hh b/milena/sandbox/green/mln/display/project_histo.hh index d842c70..30bcd6d 100644 --- a/milena/sandbox/green/mln/display/project_histo.hh +++ b/milena/sandbox/green/mln/display/project_histo.hh @@ -37,12 +37,16 @@ # include <mln/accu/image/take.hh> # include <mln/accu/image/to_result.hh> +# include <mln/algebra/vec.hh> + # include <mln/opt/at.hh> # include <mln/value/int_u8.hh> # include <mln/value/rgb8.hh> # include <mln/value/label_8.hh> +# include <mln/util/array.hh> + /// \file /// /// \brief Allow the visualization of 3d histogram. @@ -60,9 +64,30 @@ namespace mln image2d<mln_result(A)> project_histo(const image3d<V>& histo); - template <typename A, unsigned direction, typename V> + template <typename A, unsigned n, unsigned direction, typename V> image2d<mln_result(A)> - project2_histo(const image3d<V>& histo); + project2_histo(const image3d<V>& histo, + const value::int_u<n>& ambiguous_color); + + template <unsigned n, unsigned direction, typename V> + image2d<V> + project2_histo(const image3d<unsigned>& histo, + const image3d<V>& label); + + template <unsigned n, unsigned direction> + image2d< value::rgb<n> > + project3_histo(const image3d<unsigned>& histo, + const value::rgb<n> ambiguous_color); + + template <unsigned n, unsigned direction> + image2d< value::rgb8 > + project3_histo(const image3d<unsigned>& histo, + const image3d<value::label_8>& label, + const util::array<algebra::vec<3, float> >& pal, + const value::rgb8 ambiguous_color); + // FIXME ==> palette must be 1d-image not an array !! + + # ifndef MLN_INCLUDE_ONLY @@ -96,80 +121,96 @@ namespace mln return accu::image::to_result(histo_accu); } - template <unsigned direction> - image2d<value::int_u8> - project2_histo(const image3d<unsigned>& histo) + // 0 ==> blue + // 1 ==> red + // 2 ==> green + + // mln::opt::at(histo, blue, red, green) + + template <unsigned n, unsigned direction> + image2d< value::int_u<n> > + project2_histo(const image3d<unsigned>& histo, + const value::int_u<n>& ambiguous_color) { - image2d<value::int_u8> result; + image2d< value::int_u<n> > result; if (0 == direction) // blue { - image2d<value::int_u8> arg_max(histo.ncols(), histo.nslices()); + image2d< value::int_u<n> > arg_max(histo.nrows(), histo.ncols()); - for (unsigned j = 0; j < histo.ncols(); ++j) - for (unsigned i = 0; i < histo.nslices(); ++i) + for (def::coord green = 0; green < (signed)histo.ncols(); ++green) + for (def::coord red = 0; red < (signed)histo.nrows(); ++red) { - unsigned max = 0; // minimum as possible - signed pos = -1; + unsigned max = 0; // minimum as possible + def::coord pos = -1; - for (unsigned k = 0; k < histo.nrows(); ++k) + for (def::coord blue = 0; blue < (signed)histo.nslices(); ++blue) { - if (max <= opt::at(histo,i,j,k)) + if (max < opt::at(histo,blue,red,green)) { - max = opt::at(histo,i,j,k); - pos = k; + max = opt::at(histo,blue,red,green); + pos = blue; } } - opt::at(arg_max,i,j) = pos; + if (-1 == pos) + opt::at(arg_max,red,green) = ambiguous_color; + else + opt::at(arg_max,red,green) = pos; } result = arg_max; } else if (1 == direction) // red { - image2d<value::int_u8> arg_max(histo.nrows(), histo.nslices()); + image2d< value::int_u<n> > arg_max(histo.ncols(), histo.nslices()); - for (unsigned j = 0; j < histo.nslices(); ++j) - for (unsigned i = 0; i < histo.nrows(); ++i) + for (def::coord blue = 0; blue < (signed)histo.nslices(); ++blue) + for (def::coord green = 0; green < (signed)histo.ncols(); ++green) { unsigned max = 0; // minimum as possible signed pos = -1; - for (unsigned k = 0; k < histo.ncols(); ++k) + for (def::coord red = 0; red < (signed)histo.nrows(); ++red) { - if (max <= opt::at(histo,i,j,k)) + if (max < opt::at(histo,blue,red,green)) { - max = opt::at(histo,i,j,k); - pos = k; + max = opt::at(histo,blue,red,green); + pos = red; } } - opt::at(arg_max,i,j) = pos; + if (-1 == pos) + opt::at(arg_max,green,blue) = ambiguous_color; + else + opt::at(arg_max,green,blue) = pos; } result = arg_max; } else // 2 == direction // green { - image2d<value::int_u8> arg_max(histo.nrows(), histo.ncols()); + image2d< value::int_u<n> > arg_max(histo.nrows(), histo.nslices()); - for (unsigned j = 0; j < histo.ncols(); ++j) - for (unsigned i = 0; i < histo.nrows(); ++i) + for (def::coord blue = 0; blue < (signed)histo.nslices(); ++blue) + for (def::coord red = 0; red < (signed)histo.nrows(); ++red) { unsigned max = 0; // minimum as possible signed pos = -1; - for (unsigned k = 0; k < histo.nslices(); ++k) + for (def::coord green = 0; green < (signed)histo.ncols(); ++green) { - if (max <= opt::at(histo,i,j,k)) + if (max < opt::at(histo,blue,red,green)) { - max = opt::at(histo,i,j,k); - pos = k; + max = opt::at(histo,blue,red,green); + pos = green; } } - opt::at(arg_max,i,j) = pos; + if (-1 == pos) + opt::at(arg_max,red,blue) = ambiguous_color; + else + opt::at(arg_max,red,blue) = pos; } result = arg_max; @@ -178,81 +219,91 @@ namespace mln return result; } - template <unsigned direction> + template <unsigned n, unsigned direction> image2d<value::label_8> project2_histo(const image3d<unsigned>& histo, - const image3d<value::label_8>& label) + const image3d<value::label_8>& label, + const value::label_8 ambiguous_label) { image2d<value::label_8> result; if (0 == direction) // blue { - image2d<value::label_8> arg_max(histo.ncols(), histo.nslices()); + image2d<value::label_8> arg_max(histo.nrows(), histo.ncols()); - for (unsigned j = 0; j < histo.ncols(); ++j) - for (unsigned i = 0; i < histo.nslices(); ++i) + for (def::coord green = 0; green < (signed)histo.ncols(); ++green) + for (def::coord red = 0; red < (signed)histo.nrows(); ++red) { - unsigned max = 0; // minimum as possible - signed pos = -1; + unsigned max = 0; // minimum as possible + def::coord pos = -1; - for (unsigned k = 0; k < histo.nrows(); ++k) + for (def::coord blue = 0; blue < (signed)histo.nslices(); ++blue) { - if (max <= opt::at(histo,i,j,k)) + if (max < opt::at(histo,blue,red,green)) { - max = opt::at(histo,i,j,k); - pos = k; + max = opt::at(histo,blue,red,green); + pos = blue; } } - opt::at(arg_max,i,j) = opt::at(label,i,j,pos); + if (-1 == pos) + opt::at(arg_max,red,green) = ambiguous_label; + else + opt::at(arg_max,red,green) = opt::at(label, pos, red, green); } result = arg_max; } else if (1 == direction) // red { - image2d<value::label_8> arg_max(histo.nrows(), histo.nslices()); + image2d<value::label_8> arg_max(histo.ncols(), histo.nslices()); - for (unsigned j = 0; j < histo.nslices(); ++j) - for (unsigned i = 0; i < histo.nrows(); ++i) + for (def::coord blue = 0; blue < (signed)histo.nslices(); ++blue) + for (def::coord green = 0; green < (signed)histo.ncols(); ++green) { unsigned max = 0; // minimum as possible signed pos = -1; - for (unsigned k = 0; k < histo.ncols(); ++k) + for (def::coord red = 0; red < (signed)histo.nrows(); ++red) { - if (max <= opt::at(histo,i,j,k)) + if (max < opt::at(histo,blue,red,green)) { - max = opt::at(histo,i,j,k); - pos = k; + max = opt::at(histo,blue,red,green); + pos = red; } } - opt::at(arg_max,i,j) = opt::at(label,pos,i,j); + if (-1 == pos) + opt::at(arg_max,green,blue) = ambiguous_label; + else + opt::at(arg_max,green,blue) = opt::at(label, blue, pos, green); } result = arg_max; } else // 2 == direction // green { - image2d<value::label_8> arg_max(histo.nrows(), histo.ncols()); + image2d<value::label_8> arg_max(histo.nrows(), histo.nslices()); - for (unsigned j = 0; j < histo.ncols(); ++j) - for (unsigned i = 0; i < histo.nrows(); ++i) + for (def::coord blue = 0; blue < (signed)histo.nslices(); ++blue) + for (def::coord red = 0; red < (signed)histo.nrows(); ++red) { unsigned max = 0; // minimum as possible signed pos = -1; - for (unsigned k = 0; k < histo.nslices(); ++k) + for (def::coord green = 0; green < (signed)histo.ncols(); ++green) { - if (max <= opt::at(histo,i,j,k)) + if (max < opt::at(histo,blue,red,green)) { - max = opt::at(histo,i,j,k); - pos = k; + max = opt::at(histo,blue,red,green); + pos = green; } } - opt::at(arg_max,i,j) = opt::at(label,i,pos,j); + if (-1 == pos) + opt::at(arg_max,red,blue) = ambiguous_label; + else + opt::at(arg_max,red,blue) = opt::at(label, blue, red, pos); } result = arg_max; @@ -262,83 +313,117 @@ namespace mln } + + // FIXME ... determine the color of each class. - template <unsigned direction> - image2d<value::rgb8> - project3_histo(const image3d<unsigned>& histo, - const image3d<value::label_8>& label) + // FIXME la palette est supposée en 8 bits + template <unsigned n, unsigned direction> + image2d< value::rgb8 > + project3_histo(const image3d<unsigned>& histo, + const image3d<value::label_8>& label, + const util::array<algebra::vec<3,float> >& pal, + const value::rgb8 ambiguous_color) { - image2d<value::rgb8> result; + image2d< value::rgb8 > result; if (0 == direction) // blue { - image2d<value::rgb8> arg_max(histo.ncols(), histo.nslices()); + image2d< value::rgb8 > arg_max(histo.nrows(), histo.ncols()); - for (unsigned j = 0; j < histo.ncols(); ++j) - for (unsigned i = 0; i < histo.nslices(); ++i) + for (def::coord green = 0; green < (signed)histo.ncols(); ++green) + for (def::coord red = 0; red < (signed)histo.nrows(); ++red) { - unsigned max = 0; // minimum as possible - signed pos = -1; + unsigned max = 0; // minimum as possible + def::coord pos = -1; - for (unsigned k = 0; k < histo.nrows(); ++k) + for (def::coord blue = 0; blue < (signed)histo.nslices(); ++blue) { - if (max <= opt::at(histo,i,j,k)) + if (max < opt::at(histo,blue,red,green)) { - max = opt::at(histo,i,j,k); - pos = k; + max = opt::at(histo,blue,red,green); + pos = blue; } } - opt::at(arg_max,i,j) = value::rgb8(i,j,pos); + if (-1 == pos) + opt::at(arg_max,red,green) = ambiguous_color; + else + { + value::int_u8 r = pal[opt::at(label,pos,red,green)][0]; + value::int_u8 g = pal[opt::at(label,pos,red,green)][1]; + value::int_u8 b = pal[opt::at(label,pos,red,green)][2]; + value::rgb8 color(r,g,b); + + opt::at(arg_max,red,green) = color; + } } result = arg_max; } else if (1 == direction) // red { - image2d<value::rgb8> arg_max(histo.nrows(), histo.nslices()); + image2d< value::rgb8 > arg_max(histo.ncols(), histo.nslices()); - for (unsigned j = 0; j < histo.nslices(); ++j) - for (unsigned i = 0; i < histo.nrows(); ++i) + for (def::coord blue = 0; blue < (signed)histo.nslices(); ++blue) + for (def::coord green = 0; green < (signed)histo.ncols(); ++green) { unsigned max = 0; // minimum as possible signed pos = -1; - for (unsigned k = 0; k < histo.ncols(); ++k) + for (def::coord red = 0; red < (signed)histo.nrows(); ++red) { - if (max <= opt::at(histo,i,j,k)) + if (max < opt::at(histo,blue,red,green)) { - max = opt::at(histo,i,j,k); - pos = k; + max = opt::at(histo,blue,red,green); + pos = red; } } - opt::at(arg_max,i,j) = value::rgb8(pos,i,j); + if (-1 == pos) + opt::at(arg_max,green,blue) = ambiguous_color; + else + { + value::int_u8 r = pal[opt::at(label,blue,pos,green)][0]; + value::int_u8 g = pal[opt::at(label,blue,pos,green)][1]; + value::int_u8 b = pal[opt::at(label,blue,pos,green)][2]; + value::rgb8 color(r,g,b); + + opt::at(arg_max,green,blue) = color; + } } result = arg_max; } else // 2 == direction // green { - image2d<value::rgb8> arg_max(histo.nrows(), histo.ncols()); + image2d< value::rgb8 > arg_max(histo.nrows(), histo.nslices()); - for (unsigned j = 0; j < histo.ncols(); ++j) - for (unsigned i = 0; i < histo.nrows(); ++i) + for (def::coord blue = 0; blue < (signed)histo.nslices(); ++blue) + for (def::coord red = 0; red < (signed)histo.nrows(); ++red) { unsigned max = 0; // minimum as possible signed pos = -1; - for (unsigned k = 0; k < histo.nslices(); ++k) + for (def::coord green = 0; green < (signed)histo.ncols(); ++green) { - if (max <= opt::at(histo,i,j,k)) + if (max < opt::at(histo,blue,red,green)) { - max = opt::at(histo,i,j,k); - pos = k; + max = opt::at(histo,blue,red,green); + pos = green; } } - // FIXME ... how to fix the n of rgb - opt::at(arg_max,i,j) = value::rgb8(i,pos,j); + if (-1 == pos) + opt::at(arg_max,red,blue) = ambiguous_color; + else + { + value::int_u8 r = pal[opt::at(label,blue,red,pos)][0]; + value::int_u8 g = pal[opt::at(label,blue,red,pos)][1]; + value::int_u8 b = pal[opt::at(label,blue,red,pos)][2]; + value::rgb8 color(r,g,b); + + opt::at(arg_max,red,blue) = color; + } } result = arg_max; @@ -347,81 +432,91 @@ namespace mln return result; } - template <unsigned direction> - image2d<value::rgb8> - project3_histo(const image3d<unsigned>& histo) + + template <unsigned n, unsigned direction> + image2d< value::rgb<n> > + project3_histo(const image3d<unsigned>& histo, + const value::rgb<n> ambiguous_color) { - image2d<value::rgb8> result; + image2d< value::rgb<n> > result; if (0 == direction) // blue { - image2d<value::rgb8> arg_max(histo.ncols(), histo.nslices()); + image2d< value::rgb<n> > arg_max(histo.nrows(), histo.ncols()); - for (unsigned j = 0; j < histo.ncols(); ++j) - for (unsigned i = 0; i < histo.nslices(); ++i) + for (def::coord green = 0; green < (signed)histo.ncols(); ++green) + for (def::coord red = 0; red < (signed)histo.nrows(); ++red) { - unsigned max = 0; // minimum as possible - signed pos = -1; + unsigned max = 0; // minimum as possible + def::coord pos = -1; - for (unsigned k = 0; k < histo.nrows(); ++k) + for (def::coord blue = 0; blue < (signed)histo.nslices(); ++blue) { - if (max <= opt::at(histo,i,j,k)) + if (max < opt::at(histo,blue,red,green)) { - max = opt::at(histo,i,j,k); - pos = k; + max = opt::at(histo,blue,red,green); + pos = blue; } } - opt::at(arg_max,i,j) = value::rgb8(i,j,pos); + if (-1 == pos) + opt::at(arg_max,red,green) = ambiguous_color; + else + opt::at(arg_max,red,green) = value::rgb<n>(red,green,pos); } result = arg_max; } else if (1 == direction) // red { - image2d<value::rgb8> arg_max(histo.nrows(), histo.nslices()); + image2d< value::rgb<n> > arg_max(histo.ncols(), histo.nslices()); - for (unsigned j = 0; j < histo.nslices(); ++j) - for (unsigned i = 0; i < histo.nrows(); ++i) + for (def::coord blue = 0; blue < (signed)histo.nslices(); ++blue) + for (def::coord green = 0; green < (signed)histo.ncols(); ++green) { unsigned max = 0; // minimum as possible signed pos = -1; - for (unsigned k = 0; k < histo.ncols(); ++k) + for (def::coord red = 0; red < (signed)histo.nrows(); ++red) { - if (max <= opt::at(histo,i,j,k)) + if (max < opt::at(histo,blue,red,green)) { - max = opt::at(histo,i,j,k); - pos = k; + max = opt::at(histo,blue,red,green); + pos = red; } } - opt::at(arg_max,i,j) = value::rgb8(pos,i,j); + if (-1 == pos) + opt::at(arg_max,green,blue) = ambiguous_color; + else + opt::at(arg_max,green,blue) = value::rgb<n>(pos,green,blue);; } result = arg_max; } else // 2 == direction // green { - image2d<value::rgb8> arg_max(histo.nrows(), histo.ncols()); + image2d< value::rgb<n> > arg_max(histo.nrows(), histo.nslices()); - for (unsigned j = 0; j < histo.ncols(); ++j) - for (unsigned i = 0; i < histo.nrows(); ++i) + for (def::coord blue = 0; blue < (signed)histo.nslices(); ++blue) + for (def::coord red = 0; red < (signed)histo.nrows(); ++red) { unsigned max = 0; // minimum as possible signed pos = -1; - for (unsigned k = 0; k < histo.nslices(); ++k) + for (def::coord green = 0; green < (signed)histo.ncols(); ++green) { - if (max <= opt::at(histo,i,j,k)) + if (max < opt::at(histo,blue,red,green)) { - max = opt::at(histo,i,j,k); - pos = k; + max = opt::at(histo,blue,red,green); + pos = green; } } - // FIXME ... how to fix the n of rgb - opt::at(arg_max,i,j) = value::rgb8(i,pos,j); + if (-1 == pos) + opt::at(arg_max,red,blue) = ambiguous_color; + else + opt::at(arg_max,red,blue) = value::rgb<n>(red,pos,blue); } result = arg_max; -- 1.5.6.5
14 years, 1 month
1
0
0
0
last-svn-commit-26-g3849ff5 Fix last details in the image processing chain.
by Yann Jacquelet
* green/tools/annotating/histo/histo.cc: Manage new inputs/outputs. * green/tools/annotating/opening/opening.cc: Manage new inputs/outputs. * green/tools/annotating/iz/Makefile.am: New Makefile. * green/tools/annotating/iz/iz.cc: New file. * green/tools/annotating/regmax/regmax.cc: Manage new inputs/outputs. --- milena/sandbox/ChangeLog | 10 + .../sandbox/green/tools/annotating/histo/histo.cc | 84 +++-- .../tools/annotating/{histo => iz}/Makefile.am | 0 milena/sandbox/green/tools/annotating/iz/iz.cc | 373 ++++++++++++++++++++ .../green/tools/annotating/opening/opening.cc | 76 +++-- .../green/tools/annotating/regmax/regmax.cc | 253 ++++++++++++-- 6 files changed, 714 insertions(+), 82 deletions(-) copy milena/sandbox/green/tools/annotating/{histo => iz}/Makefile.am (100%) create mode 100644 milena/sandbox/green/tools/annotating/iz/iz.cc diff --git a/milena/sandbox/ChangeLog b/milena/sandbox/ChangeLog index b9d40cb..097ea5c 100644 --- a/milena/sandbox/ChangeLog +++ b/milena/sandbox/ChangeLog @@ -1,3 +1,13 @@ +2010-02-10 Yann Jacquelet <jacquelet(a)lrde.epita.fr> + + Fix last details in the image processing chain. + + * green/tools/annotating/histo/histo.cc: Manage new inputs/outputs. + * green/tools/annotating/opening/opening.cc: Manage new inputs/outputs. + * green/tools/annotating/iz/Makefile.am: New Makefile. + * green/tools/annotating/iz/iz.cc: New file. + * green/tools/annotating/regmax/regmax.cc: Manage new inputs/outputs. + 2010-01-05 Yann Jacquelet <jacquelet(a)lrde.epita.fr> Extend the histogram visualization tools for new projection concept. diff --git a/milena/sandbox/green/tools/annotating/histo/histo.cc b/milena/sandbox/green/tools/annotating/histo/histo.cc index ab0b8af..8037e1a 100644 --- a/milena/sandbox/green/tools/annotating/histo/histo.cc +++ b/milena/sandbox/green/tools/annotating/histo/histo.cc @@ -16,14 +16,14 @@ #include <mln/fun/v2v/rgb8_to_rgbn.hh> -#include <mln/io/dump/save.hh> #include <mln/io/pbm/load.hh> -#include <mln/io/pbm/save.hh> -#include <mln/io/pgm/load.hh> -#include <mln/io/pgm/save.hh> #include <mln/io/ppm/load.hh> +#include <mln/io/dump/save.hh> +#include <mln/io/pgm/save.hh> #include <mln/io/ppm/save.hh> +#include <mln/literal/colors.hh> + #include <mln/opt/at.hh> #include <mln/pw/value.hh> @@ -33,15 +33,19 @@ template <unsigned n> -void mk_histo(const std::string& input, - const std::string& output, - const std::string& histo, - const std::string& mask) +void mk_histo(const std::string& input, // in + const std::string& quant, // in + const std::string& histo, // out + const std::string& proj1, // out + const std::string& proj2, // out + const std::string& mask) // [in] { typedef mln::value::int_u8 t_int_u8; + typedef mln::value::int_u<n> t_int_un; typedef mln::value::rgb8 t_rgb8; typedef mln::value::rgb<n> t_rgbn; typedef mln::image2d<t_int_u8> t_image2d_int_u8; + typedef mln::image2d<t_int_un> t_image2d_int_un; typedef mln::image2d<t_rgb8> t_image2d_rgb8; typedef mln::image2d<t_rgbn> t_image2d_rgbn; typedef mln::image2d<bool> t_image2d_bool; @@ -54,7 +58,9 @@ void mk_histo(const std::string& input, t_image2d_rgbn i1_input; // input rgbn t_image2d_bool m0_input; // mask input t_histo3d h1_input; // histo input - t_image2d_int_u8 p1_histo; // histo proj + t_image2d_int_u8 p1_histo1;// histo proj1 + t_image2d_rgbn p1_histo2;// histo proj2 + t_rgbn red(mln::literal::red); mln::io::ppm::load(i0_input, input.c_str()); i1_input = mln::data::transform(i0_input, t_rgb8_to_rgbn()); @@ -72,9 +78,13 @@ void mk_histo(const std::string& input, // END OF IMAGE PROCESSING CHAIN // BEGIN DUMPING - p1_histo = mln::display::display_histo3d_unsigned(h1_input); + p1_histo1 = mln::display::display_histo3d_unsigned(h1_input); + p1_histo2 = mln::display::display3_histo3d_unsigned(h1_input, red); + + mln::io::ppm::save(i1_input, quant.c_str()); mln::io::dump::save(h1_input, histo.c_str()); - mln::io::pgm::save(p1_histo, output.c_str()); + mln::io::pgm::save(p1_histo1, proj1.c_str()); + mln::io::ppm::save(p1_histo2, proj2.c_str()); // END DUMPING } @@ -82,35 +92,47 @@ void mk_histo(const std::string& input, void usage() { std::cout << std::endl; - std::cout << "histo input.ppm q out.ppm histo.dump [msk.pbm]" << std::endl; - std::cout << "where" << std::endl; - std::cout << "input.ppm is the 8 bits color ppm image" << std::endl; - std::cout << "q is the degree of quanification {2,3,4,5,6,7,8}" << std::endl; - std::cout << "out.pgm is the r/g projection of the histogram" << std::endl; - std::cout << "out.dump is the quantified color histogram" << std::endl; - std::cout << "msk.pbm is the mask which select the pixels" << std::endl; + std::cout << "histo input.ppm q quant.ppm histo.dump proj.pgm" + << " proj.ppm [msk.pbm]" << std::endl; + std::cout << std::endl; + std::cout << "where :" << std::endl; + std::cout << "* [ in] input.ppm is the 8 bits color ppm image" << std::endl; + std::cout << "* [ in] q is the degree of quantification" + << " {2,3,4,5,6,7,8}" << std::endl; + std::cout << "* [out] quant.ppm is the q bits quantified input" + << " image" << std::endl; + std::cout << "* [out] histo.dump is the quantified color" + << " histogram" << std::endl; + std::cout << "* [out] proj.pgm is the r/g projection of the" + << " histogram (summing along the blue axe)" << std::endl; + std::cout << "* [out] proj.ppm is the r/g projection of the" + << " histogram with maxima plot on" << std::endl; + std::cout << "* [ in] msk.pbm is the mask which selects the" + << " pixels" << std::endl; std::cout << std::endl; } int main(int argc, char* args[]) { - if (5 == argc || 6 == argc) + if (7 == argc || 8 == argc) { - const std::string input(args[1]); - const char q = args[2][0]; - const std::string output(args[3]); - const std::string histo(args[4]); - const std::string mask(6 == argc? args[5] : ""); + const std::string input(args[1]); // in + const char q = args[2][0]; // in + const std::string quant(args[3]); // out + const std::string histo(args[4]); // out + const std::string proj1(args[5]); // out + const std::string proj2(args[6]); // out + const std::string mask(8 == argc? args[7] : ""); // [in] switch(q) { - case '2': mk_histo<2>(input, output, histo, mask); break; - case '3': mk_histo<3>(input, output, histo, mask); break; - case '4': mk_histo<4>(input, output, histo, mask); break; - case '5': mk_histo<5>(input, output, histo, mask); break; - case '6': mk_histo<6>(input, output, histo, mask); break; - case '7': mk_histo<7>(input, output, histo, mask); break; - case '8': mk_histo<8>(input, output, histo, mask); break; + case '2': mk_histo<2>(input, quant, histo, proj1, proj2, mask); break; + case '3': mk_histo<3>(input, quant, histo, proj1, proj2, mask); break; + case '4': mk_histo<4>(input, quant, histo, proj1, proj2, mask); break; + case '5': mk_histo<5>(input, quant, histo, proj1, proj2, mask); break; + case '6': mk_histo<6>(input, quant, histo, proj1, proj2, mask); break; + case '7': mk_histo<7>(input, quant, histo, proj1, proj2, mask); break; + case '8': mk_histo<8>(input, quant, histo, proj1, proj2, mask); break; default: usage(); break; } } diff --git a/milena/sandbox/green/tools/annotating/histo/Makefile.am b/milena/sandbox/green/tools/annotating/iz/Makefile.am similarity index 100% copy from milena/sandbox/green/tools/annotating/histo/Makefile.am copy to milena/sandbox/green/tools/annotating/iz/Makefile.am diff --git a/milena/sandbox/green/tools/annotating/iz/iz.cc b/milena/sandbox/green/tools/annotating/iz/iz.cc new file mode 100644 index 0000000..07e5dd9 --- /dev/null +++ b/milena/sandbox/green/tools/annotating/iz/iz.cc @@ -0,0 +1,373 @@ +// TOOLS ==> influence zone transformation + +#include <iostream> +#include <fstream> +#include <boost/format.hpp> + +#include <mln/accu/stat/histo3d_rgb.hh> + +#include <mln/core/macros.hh> +#include <mln/core/alias/neighb3d.hh> +#include <mln/core/image/image2d.hh> +#include <mln/core/image/image3d.hh> + +#include <mln/data/compute.hh> + +#include <mln/display/display_histo.hh> + +#include <mln/io/dump/load.hh> +#include <mln/io/dump/save.hh> +#include <mln/io/ppm/load.hh> +#include <mln/io/ppm/save.hh> +#include <mln/io/pgm/load.hh> +#include <mln/io/pgm/save.hh> + +#include <mln/literal/colors.hh> + +#include <mln/labeling/compute.hh> +#include <mln/labeling/mean_values.hh> + +#include <mln/transform/influence_zone_geodesic.hh> + +#include <mln/value/int_u8.hh> + +template <unsigned n> +struct t_labeling_rgbn : mln::Function_v2v< t_labeling_rgbn<n> > +{ + typedef mln::value::rgb<n> t_rgbn; + typedef mln::value::label_8 t_lbl8; + typedef t_rgbn argument; + typedef t_lbl8 result; + typedef mln::image3d<t_lbl8> t_label; + + const t_label& _label; + + t_labeling_rgbn(const t_label& label) : _label(label) {} + + result operator()(const argument& c) const + { + t_lbl8 tmp = mln::opt::at(_label, c.blue(), c.red(), c.green()); + + return tmp; + } +}; + +void compute_stats(const mln::image2d<mln::value::rgb8>& i_input_rgb8, + const mln::image2d<mln::value::label_8>& l_input_lbl8, + const mln::image3d<unsigned>& h_histo_rgbn, + const mln::image3d<mln::value::label_8>& l_histo_lbl8, + const mln::value::label_8& n_labels, + const std::string& log) +{ + typedef mln::algebra::vec<3,float> t_vec3f; + typedef mln::accu::math::sum<unsigned,unsigned> t_sum; + typedef mln::accu::stat::mean<t_vec3f,t_vec3f,t_vec3f> t_mean; + typedef mln::util::array<unsigned> t_count_array; + typedef mln::util::array<t_vec3f> t_mean_array; + + mln::util::array<float> abs((unsigned)(n_labels)+1); + mln::util::array<float> rel((unsigned)(n_labels)+1); + unsigned nb = 0; + + for (unsigned i = 0; i <= n_labels; ++i) + { + abs[i] = 0.0; + rel[i] = 0.0; + } + + // COMPUTE THE SUM + t_count_array count = mln::labeling::compute(t_sum(), + h_histo_rgbn, + l_histo_lbl8, + n_labels); + + // COMPUTE THE TOTAL + for (unsigned i = 0; i <= n_labels; ++i) + { + unsigned c = count[i]; + nb += c; + } + + // COMPUTE THE PERCENTAGES + for (unsigned i = 0; i <= n_labels; ++i) + if (0 < count[i]) + { + abs[i] = ((float)count[i] / nb)*100.0; + rel[i] = ((float)count[i] / (nb - count[0]))*100.0; + } + + // COMPUTE THE MEAN + + t_mean_array mean = mln::labeling::compute(t_mean(), + i_input_rgb8, + l_input_lbl8, + n_labels); + + // CORRECT 0 LABEL STATS + rel[0] = 0; + mean[0][0] = 255.0; + mean[0][1] = 255.0; + mean[0][2] = 0.0; + + // PRINT STATS + std::ofstream log_stream(log.c_str()); + + for (unsigned i = 0; i <= n_labels; ++i) + { + const t_vec3f& mean_v = mean[i]; + + log_stream << boost::format("%2i|" + "r = %6.2f, g = %6.2f, b = %6.2f |" + "c = %7i, %%i = %5.2f, %%c = %5.2f") + % i + % mean_v[0] + % mean_v[1] + % mean_v[2] + % count[i] + % abs[i] + % rel[i] + << std::endl; + } + + log_stream << std::endl << std::endl; + log_stream.flush(); + log_stream.close(); +} + +bool expect(std::istream& stream, const std::string expected) +{ + bool result; + std::string got; + + stream >> got; + + result = (got == expected); + + return result; +} + +std::istream& operator>>(std::istream& stream, + mln::algebra::vec<3,float>& color) +{ + unsigned lbl; + + stream >> lbl; + if (expect(stream, std::string("|")) && + expect(stream, std::string("r")) && + expect(stream, std::string("="))) + { + stream >> color[0]; + + if (expect(stream, std::string(",")) && + expect(stream, std::string("g")) && + expect(stream, std::string("="))) + { + stream >> color[1]; + + if (expect(stream, std::string(",")) && + expect(stream, std::string("b")) && + expect(stream, std::string("="))) + { + stream >> color[2]; + } + } + } + + return stream; +} + +void load(mln::util::array< mln::algebra::vec<3,float> >& m2_label, + const char *colormap) +{ + typedef mln::algebra::vec<3,float> t_vec3f; + typedef mln::util::array<t_vec3f> t_mean_array; + + std::ifstream stream(colormap); + std::string buffer; + + getline(stream, buffer); + + while (0 < buffer.size()) + { + std::stringstream line(buffer); + t_vec3f mean_v; + + line >> mean_v; + + m2_label.append(mean_v); + + getline(stream, buffer); + } + + stream.close(); +} + +template<unsigned n> +void mk_iz(const std::string& labeled, // in + const unsigned d, // in + const mln::neighb3d& nbh, // in + const std::string& input, // in + const std::string& quant, // in + const std::string& histo, // in + const std::string& colormap,// in + const std::string& iz, // out + const std::string& proj, // out + const std::string& mean, // out + const std::string& stats) // [out] +{ + typedef mln::value::int_u8 t_int_u8; + typedef mln::value::label_8 t_lbl8; + typedef mln::value::rgb8 t_rgb8; + typedef mln::value::rgb<n> t_rgbn; + typedef mln::algebra::vec<3,float> t_v3f; + typedef mln::image2d<t_int_u8> t_image2d_int_u8; + typedef mln::image2d<t_rgb8> t_image2d_rgb8; + typedef mln::image2d<t_rgbn> t_image2d_rgbn; + typedef mln::image2d<t_lbl8> t_image2d_lbl8; + typedef mln::image3d<unsigned> t_histo3d; + typedef mln::image3d<t_lbl8> t_image3d_lbl8; + typedef mln::accu::meta::stat::histo3d_rgb t_histo3d_fun; + typedef mln::accu::stat::mean<t_v3f,t_v3f,t_v3f> t_mean; + typedef mln::util::array<t_v3f> t_mean_array; + + // START OF IMAGE PROCESSING CHAIN + t_image2d_rgb8 i0_input; // input img + t_image2d_rgbn i1_input; // quant img + t_histo3d h1_input; // histo input + t_histo3d h2_input; // histo input + t_image2d_int_u8 p1_histo; // histo proj + t_image2d_rgb8 p3_histo; // histo proj + t_image3d_lbl8 l2_histo; // label histo + t_image3d_lbl8 l3_histo; // iz label hist + t_mean_array m2_label; // colormap + t_mean_array m3_label; // colormap + t_image2d_lbl8 l3_input; // label input + t_image2d_rgb8 i3_mean; // reconstructed + + t_lbl8 n_lbl; // nb labels + t_rgb8 red(mln::literal::red); + + mln::io::dump::load(l2_histo, labeled.c_str()); + mln::io::ppm::load(i0_input, input.c_str()); + mln::io::ppm::load(i1_input, quant.c_str()); + mln::io::dump::load(h1_input, histo.c_str()); + load(m2_label, colormap.c_str()); + + if (0 == d) + { + l3_histo = mln::transform::influence_zone_geodesic(l2_histo, nbh); + } + else + { + l3_histo = mln::transform::influence_zone_geodesic(l2_histo, nbh, d); + } + // END OF IMAGE PROCESSING CHAIN + + // BEGIN DUMPING + + n_lbl = (t_lbl8)(m2_label.size()-1); + + l3_input = mln::data::transform(i1_input, t_labeling_rgbn<n>(l3_histo)); + i3_mean = mln::labeling::mean_values(i0_input, l3_input, n_lbl); + m3_label = mln::labeling::compute(t_mean(), i0_input, l3_input, n_lbl); + + // CORRECT 0 LABEL STATS + m3_label[0][0] = 255.0; + m3_label[0][1] = 255.0; + m3_label[0][2] = 0.0; + + p3_histo = mln::display::display3_histo3d_unsigned<n>(h1_input, + l3_histo, + m3_label, + red); + mln::io::dump::save(l3_input, iz.c_str()); + mln::io::ppm::save(p3_histo, proj.c_str()); + mln::io::ppm::save(i3_mean, mean.c_str()); + + if (0 < stats.size()) + compute_stats(i0_input, l3_input, h1_input, l3_histo, n_lbl, stats); + + // END DUMPING +} + + +void usage() +{ + std::cout << std::endl; + std::cout << "iz labeled.dump d nbh input.ppm q quant.ppm" + << " histo.dump colormap.txt iz.dump proj.ppm" + << " mean.ppm [stats.txt]" << std::endl; + std::cout << std::endl; + std::cout << "where :" << std::endl; + std::cout << "* [ in] labeled.dump is the labeled 3d histogram" << std::endl; + std::cout << "* [ in] d is the depth for the zone influence" + << " transformation (0 means infinite)" << std::endl; + std::cout << "* [ in] nbh is the 3d neighbourhood {6,18,26}" << std::endl; + std::cout << "* [ in] input.ppm is the 8 bits color ppm image" << std::endl; + std::cout << "* [ in] q is the degree of quantification" + << " {2,3,4,5,6,7,8}" << std::endl; + std::cout << "* [ in] quant.ppm is the q bits quantified input" + << " image" << std::endl; + std::cout << "* [ in] histo.dump is the quantified color" + << " histogram" << std::endl; + std::cout << "* [ in] colormap.txt is the colormap for labels" << std::endl; + std::cout << "* [out] iz.dump is the iz labeled 3d histogram" << std::endl; + std::cout << "* [out] proj.ppm is the r/g projection of the" + << " histogram with maxima label plot on" << std::endl; + std::cout << "* [out] mean.ppm is the mean reconstructed image" << std::endl; + std::cout << "* [out] stats.txt is the statistical label report"<< std::endl; + std::cout << std::endl; +} + +int main(int argc, char* args[]) +{ + if (12 == argc || 13 == argc) + { + const std::string labeled(args[1]); // in + const unsigned d = atoi(args[2]); // in + const char nbh = args[3][0]; // in + const std::string input(args[4]); // in + const char q = args[5][0]; // in + const std::string quant(args[6]); // in + const std::string histo(args[7]); // in + const std::string colormap(args[8]); // in + const std::string iz(args[9]); // out + const std::string proj(args[10]); // out + const std::string mean(args[11]); // out + const std::string stats(13 == argc? args[12] : ""); // [out] + + + mln::neighb3d neighbourhood; + + switch (nbh) + { + case '6': neighbourhood = mln::c6(); break; + case '1': neighbourhood = mln::c18(); break; + case '2': neighbourhood = mln::c26(); break; + default: usage(); return 0; // force usage and quit + } + + switch (q) + { + case '2' : mk_iz<2>(labeled,d,neighbourhood,input,quant, + histo,colormap,iz,proj,mean,stats);break; + case '3' : mk_iz<3>(labeled,d,neighbourhood,input,quant, + histo,colormap,iz,proj,mean,stats);break; + case '4' : mk_iz<4>(labeled,d,neighbourhood,input,quant, + histo,colormap,iz,proj,mean,stats);break; + case '5' : mk_iz<5>(labeled,d,neighbourhood,input,quant, + histo,colormap,iz,proj,mean,stats);break; + case '6' : mk_iz<6>(labeled,d,neighbourhood,input,quant, + histo,colormap,iz,proj,mean,stats);break; + case '7' : mk_iz<7>(labeled,d,neighbourhood,input,quant, + histo,colormap,iz,proj,mean,stats);break; + case '8' : mk_iz<8>(labeled,d,neighbourhood,input,quant, + histo,colormap,iz,proj,mean,stats);break; + default: usage(); break; + } + } + else + usage(); + + return 0; +} diff --git a/milena/sandbox/green/tools/annotating/opening/opening.cc b/milena/sandbox/green/tools/annotating/opening/opening.cc index 3e1dbf2..cdd37fb 100644 --- a/milena/sandbox/green/tools/annotating/opening/opening.cc +++ b/milena/sandbox/green/tools/annotating/opening/opening.cc @@ -15,36 +15,47 @@ #include <mln/io/dump/load.hh> #include <mln/io/dump/save.hh> -#include <mln/io/pgm/load.hh> +#include <mln/io/ppm/save.hh> #include <mln/io/pgm/save.hh> +#include <mln/literal/colors.hh> + #include <mln/morpho/opening/volume.hh> +#include <mln/value/rgb.hh> #include <mln/value/int_u8.hh> -void mk_opening(const std::string& input, - const unsigned min_vol, - const std::string& output, - const std::string& opened) +template <unsigned n> +void mk_opening(const std::string& histo, // in + const unsigned min_vol, // in + const std::string& opened, // out + const std::string& proj1, // out + const std::string& proj2) // out { typedef mln::value::int_u8 t_int_u8; + typedef mln::value::rgb<n> t_rgbn; typedef mln::image2d<t_int_u8> t_image2d_int_u8; + typedef mln::image2d<t_rgbn> t_image2d_rgbn; typedef mln::image3d<unsigned> t_histo3d; typedef mln::accu::meta::stat::histo3d_rgb t_histo3d_fun; // START OF IMAGE PROCESSING CHAIN t_histo3d h1_input; // histo input t_histo3d h2_input; // histo input - t_image2d_int_u8 p1_histo; // histo proj + t_image2d_int_u8 p1_histo1;// histo proj1 + t_image2d_rgbn p1_histo2;// histo proj2 + t_rgbn red(mln::literal::red); - mln::io::dump::load(h1_input, input.c_str()); + mln::io::dump::load(h1_input, histo.c_str()); h2_input = mln::morpho::opening::volume(h1_input, mln::c6(), min_vol); // END OF IMAGE PROCESSING CHAIN // BEGIN DUMPING - p1_histo = mln::display::display_histo3d_unsigned(h2_input); + p1_histo1 = mln::display::display_histo3d_unsigned(h2_input); + p1_histo2 = mln::display::display3_histo3d_unsigned(h2_input, red); mln::io::dump::save(h2_input, opened.c_str()); - mln::io::pgm::save(p1_histo, output.c_str()); + mln::io::pgm::save(p1_histo1, proj1.c_str()); + mln::io::ppm::save(p1_histo2, proj2.c_str()); // END DUMPING } @@ -52,25 +63,46 @@ void mk_opening(const std::string& input, void usage() { std::cout << std::endl; - std::cout << "opening input.dump v out.dump out.ppm" << std::endl; - std::cout << "where" << std::endl; - std::cout << "input.dump is the 3d color input histo" << std::endl; - std::cout << "v is the minimum size of each composant" << std::endl; - std::cout << "out.pgm is the r/g proj of the opened histogram" << std::endl; - std::cout << "out.dump is the opened histogram" << std::endl; + std::cout << "opening q histo.dump v opened.dump proj.pgm" + << " proj.ppm" << std::endl; + std::cout << std::endl; + std::cout << "where :" << std::endl; + std::cout << "* [ in] q is the degree of quantification" + << " {2,3,4,5,6,7,8}" << std::endl; + std::cout << "* [ in] histo.dump is the quantified color" + << " histogram" << std::endl; + std::cout << "* [ in] v is the minimum size (in pixels) of" + << " each composant" << std::endl; + std::cout << "* [out] opened.dump is the filtered histogram" << std::endl; + std::cout << "* [out] proj.pgm is the r/g projection of the" + << " histogram (summing along the blue axe)" << std::endl; + std::cout << "* [out] proj.ppm is the r/g projection of the" + << " histogram with maxima plot on" << std::endl; std::cout << std::endl; } int main(int argc, char* args[]) { - if (5 == argc) + if (7 == argc) { - const std::string input(args[1]); - const unsigned min_vol = atoi(args[2]); - const std::string output(args[3]); - const std::string opened(args[4]); - - mk_opening(input, min_vol, output, opened); + const char q = args[1][0]; // in + const std::string histo(args[2]); // in + const unsigned min_vol = atoi(args[3]); // in + const std::string opened(args[4]); // out + const std::string proj1(args[5]); // out + const std::string proj2(args[6]); // out + + switch(q) + { + case '2': mk_opening<2>(histo, min_vol, opened, proj1, proj2); break; + case '3': mk_opening<3>(histo, min_vol, opened, proj1, proj2); break; + case '4': mk_opening<4>(histo, min_vol, opened, proj1, proj2); break; + case '5': mk_opening<5>(histo, min_vol, opened, proj1, proj2); break; + case '6': mk_opening<6>(histo, min_vol, opened, proj1, proj2); break; + case '7': mk_opening<7>(histo, min_vol, opened, proj1, proj2); break; + case '8': mk_opening<8>(histo, min_vol, opened, proj1, proj2); break; + default: usage(); break; + } } else usage(); diff --git a/milena/sandbox/green/tools/annotating/regmax/regmax.cc b/milena/sandbox/green/tools/annotating/regmax/regmax.cc index 2079bc4..0ff4d2e 100644 --- a/milena/sandbox/green/tools/annotating/regmax/regmax.cc +++ b/milena/sandbox/green/tools/annotating/regmax/regmax.cc @@ -1,8 +1,13 @@ // TOOLS ==> regmax on histo #include <iostream> +#include <fstream> +#include <boost/format.hpp> #include <mln/accu/stat/histo3d_rgb.hh> +#include <mln/accu/stat/mean.hh> + +#include <mln/algebra/vec.hh> #include <mln/core/macros.hh> #include <mln/core/alias/neighb3d.hh> @@ -18,9 +23,14 @@ #include <mln/io/dump/save.hh> #include <mln/io/pgm/load.hh> #include <mln/io/pgm/save.hh> +#include <mln/io/ppm/load.hh> #include <mln/io/ppm/save.hh> #include <mln/labeling/regional_maxima.hh> +#include <mln/labeling/compute.hh> +#include <mln/labeling/mean_values.hh> + +#include <mln/literal/colors.hh> #include <mln/morpho/opening/volume.hh> @@ -28,6 +38,8 @@ #include <mln/value/int_u8.hh> #include <mln/value/rgb8.hh> +#include <mln/util/array.hh> + template <unsigned n> struct t_labeling_rgbn : mln::Function_v2v< t_labeling_rgbn<n> > { @@ -49,19 +61,134 @@ struct t_labeling_rgbn : mln::Function_v2v< t_labeling_rgbn<n> > } }; -void mk_regmax(const std::string& input, - const std::string& quant, - const std::string& histo, - const std::string& label, - const std::string& output) +void compute_stats(const mln::image2d<mln::value::rgb8>& i_input_rgb8, + const mln::image2d<mln::value::label_8>& l_input_lbl8, + const mln::image3d<unsigned>& h_histo_rgbn, + const mln::image3d<mln::value::label_8>& l_histo_lbl8, + const mln::value::label_8& n_labels, + const std::string& log) +{ + typedef mln::algebra::vec<3,float> t_vec3f; + typedef mln::accu::math::sum<unsigned,unsigned> t_sum; + typedef mln::accu::stat::mean<t_vec3f,t_vec3f,t_vec3f> t_mean; + typedef mln::util::array<unsigned> t_count_array; + typedef mln::util::array<t_vec3f> t_mean_array; + + mln::util::array<float> abs((unsigned)(n_labels)+1); + mln::util::array<float> rel((unsigned)(n_labels)+1); + unsigned nb = 0; + + for (unsigned i = 0; i <= n_labels; ++i) + { + abs[i] = 0.0; + rel[i] = 0.0; + } + + // COMPUTE THE SUM + t_count_array count = mln::labeling::compute(t_sum(), + h_histo_rgbn, + l_histo_lbl8, + n_labels); + + // COMPUTE THE TOTAL + for (unsigned i = 0; i <= n_labels; ++i) + { + unsigned c = count[i]; + nb += c; + } + + // COMPUTE THE PERCENTAGES + for (unsigned i = 0; i <= n_labels; ++i) + if (0 < count[i]) + { + abs[i] = ((float)count[i] / nb)*100.0; + rel[i] = ((float)count[i] / (nb - count[0]))*100.0; + } + + // COMPUTE THE MEAN + + t_mean_array mean = mln::labeling::compute(t_mean(), + i_input_rgb8, + l_input_lbl8, + n_labels); + + // CORRECT 0 LABEL STATS + rel[0] = 0; + mean[0][0] = 255.0; + mean[0][1] = 255.0; + mean[0][2] = 0.0; + + // PRINT STATS + std::ofstream log_stream(log.c_str()); + + for (unsigned i = 0; i <= n_labels; ++i) + { + const t_vec3f& mean_v = mean[i]; + + log_stream << boost::format("%2i|" + "r = %6.2f, g = %6.2f, b = %6.2f |" + "c = %7i, %%i = %5.2f, %%c = %5.2f") + % i + % mean_v[0] + % mean_v[1] + % mean_v[2] + % count[i] + % abs[i] + % rel[i] + << std::endl; + } + + log_stream << std::endl << std::endl; + log_stream.flush(); + log_stream.close(); +} + +void save(mln::util::array< mln::algebra::vec<3,float> >& m2_label, + const char *colormap) +{ + typedef mln::algebra::vec<3,float> t_vec3f; + typedef mln::util::array<t_vec3f> t_mean_array; + + std::ofstream stream(colormap); + + for (unsigned i = 0; i < m2_label.size(); ++i) + { + const t_vec3f& mean_v = m2_label[i]; + + stream << boost::format("%2i | r = %6.2f, g = %6.2f, b = %6.2f") + % i + % mean_v[0] + % mean_v[1] + % mean_v[2] + << std::endl; + } + + stream.flush(); + stream.close(); +} + +template <unsigned n> +void mk_regmax(const std::string& input, // in + const std::string& quant, // in + const std::string& histo, // in + const std::string& opened, // in + const mln::neighb3d& nbh, // in + const std::string& labeled, // out + const std::string& proj, // out + const std::string& colormap,// out + const std::string& mean, // out + const std::string& stats) // [out] { typedef mln::value::label_8 t_lbl8; typedef mln::value::rgb8 t_rgb8; - typedef mln::value::rgbn t_rgbn; + typedef mln::value::rgb<n> t_rgbn; typedef mln::value::int_u8 t_int_u8; + typedef mln::value::int_u<n> t_int_un; typedef mln::algebra::vec<3,float> t_v3f; typedef mln::image2d<t_int_u8> t_image2d_int_u8; + typedef mln::image2d<t_int_un> t_image2d_int_un; typedef mln::image2d<t_rgb8> t_image2d_rgb8; + typedef mln::image2d<t_rgbn> t_image2d_rgbn; typedef mln::image3d<t_lbl8> t_image3d_lbl8; typedef mln::image2d<t_lbl8> t_image2d_lbl8; typedef mln::image3d<unsigned> t_histo3d; @@ -71,60 +198,128 @@ void mk_regmax(const std::string& input, t_image2d_rgb8 i0_input; // input img t_image2d_rgbn i1_input; // quant img + t_histo3d h1_input; // input histo t_histo3d h2_input; // opened histo -// t_image2d_int_u8 p2_label; // histo proj - t_image2d_lbl8 p2_label; // histo proj -// t_image2d_rgb8 p2_label; // histo proj + t_image2d_rgb8 p2_label; // histo proj t_image3d_lbl8 l2_histo; // label histo - t_mean_array m2_label; // palette + t_image2d_lbl8 l2_input; // label input + t_mean_array m2_label; // colormap + t_image2d_rgb8 i2_mean; // reconstructed t_lbl8 n_lbl; // nb class + t_rgb8 red(mln::literal::red); + // BEGIN LOADING mln::io::ppm::load(i0_input, input.c_str()); mln::io::ppm::load(i1_input, quant.c_str()); - mln::io::dump::load(h2_input, histo.c_str()); + mln::io::dump::load(h1_input, histo.c_str()); + mln::io::dump::load(h2_input, opened.c_str()); // END LOADING // BEGIN IMAGE PROCESSING - l2_histo = mln::labeling::regional_maxima(h2_input, mln::c6(), n_lbl); + l2_histo = mln::labeling::regional_maxima(h2_input, nbh, n_lbl); // END IMAGE PROCESSING // BEGIN SAVING - mln::debug::println(h2_input); mln::io::dump::save(l2_histo, labeled.c_str()); l2_input = mln::data::transform(i1_input, t_labeling_rgbn<n>(l2_histo)); - m2_label = mln::labeling::compute(t_mean(), i0_input, l2_input, n_labels); - p2_label =mln::display::display3_histo3d_unsigned(h2_input,l2_histo,m2_label); + i2_mean = mln::labeling::mean_values(i0_input, l2_input, n_lbl); + m2_label = mln::labeling::compute(t_mean(), i0_input, l2_input, n_lbl); + + // CORRECT 0 LABEL STATS + m2_label[0][0] = 255.0; + m2_label[0][1] = 255.0; + m2_label[0][2] = 0.0; + + p2_label =mln::display::display3_histo3d_unsigned<n>(h1_input, + l2_histo, + m2_label, + red); + + mln::io::ppm::save(p2_label, proj.c_str()); + save(m2_label, colormap.c_str()); + mln::io::ppm::save(i2_mean, mean.c_str()); + + if (0 < stats.size()) + compute_stats(i0_input, l2_input, h1_input, l2_histo, n_lbl, stats); -// mln::io::pgm::save(p2_label, output.c_str()); - mln::io::ppm::save(p2_label, output.c_str()); - std::cout << "Nb classes : " << n_lbl << std::endl; // END SAVING } - void usage() { std::cout << std::endl; - std::cout << "regmax input.dump out.dump out.ppm" << std::endl; - std::cout << "where" << std::endl; - std::cout << "input.dump is opened histo" << std::endl; - std::cout << "out.pgm is the r/g proj of the opened histogram" << std::endl; - std::cout << "out.dump is the labeled histogram" << std::endl; + std::cout << "regmax input.ppm q quant.ppm histo.dump" + << " opened.dump nbh labeled.dump proj.ppm" + << " colormap.txt mean.ppm [stats.txt]" << std::endl; + std::cout << std::endl; + std::cout << "where :" << std::endl; + std::cout << "* [ in] input.ppm is the 8 bits color ppm image" << std::endl; + std::cout << "* [ in] q is the degree of quantification" + << " {2,3,4,5,6,7,8}" << std::endl; + std::cout << "* [ in] quant.ppm is the q bits quantified input" + << " image" << std::endl; + std::cout << "* [ in] histo.dump is the quantified color" + << " histogram" << std::endl; + std::cout << "* [ in] opened.dump is the filtered histogram" << std::endl; + std::cout << "* [ in] nbh is the 3d neighbourhood {6,18,26}" << std::endl; + std::cout << "* [out] labeled.dump is the labeled 3d histogram" << std::endl; + std::cout << "* [out] proj.ppm is the r/g projection of the" + << " histogram with maxima label plot on" << std::endl; + std::cout << "* [out] colormap.txt is the colormap for labels" << std::endl; + std::cout << "* [out] mean.ppm is the mean reconstructed image" << std::endl; + std::cout << "* [out] stats.txt is the statistical label report"<< std::endl; std::cout << std::endl; } int main(int argc, char* args[]) { - if (4 == argc) + if (11 == argc || 12 == argc) { - const std::string input(args[1]); - const std::string output(args[2]); - const std::string labeled(args[3]); + const std::string input(args[1]); // in + const char q = args[2][0]; // in + const std::string quant(args[3]); // in + const std::string histo(args[4]); // in + const std::string opened(args[5]); // in + const char nbh = args[6][0]; // in + const std::string labeled(args[7]); // out + const std::string proj(args[8]); // out + const std::string colormap(args[9]);// out + const std::string mean(args[10]); // out + const std::string stats(12 == argc? args[11] : ""); // [out] + + + mln::neighb3d neighbourhood; + + switch (nbh) + { + case '6': neighbourhood = mln::c6(); break; + case '1': neighbourhood = mln::c18(); break; + case '2': neighbourhood = mln::c26(); break; + default: usage(); return 0; // force usage and quit + } + + switch (q) + { - mk_regmax(input, output, labeled); + case '2': mk_regmax<2>(input,quant,histo,opened,neighbourhood, + labeled,proj,colormap,mean,stats); break; + case '3': mk_regmax<3>(input,quant,histo,opened,neighbourhood, + labeled,proj,colormap,mean,stats); break; + case '4': mk_regmax<4>(input,quant,histo,opened,neighbourhood, + labeled,proj,colormap,mean,stats); break; + case '5': mk_regmax<5>(input,quant,histo,opened,neighbourhood, + labeled,proj,colormap,mean,stats); break; + case '6': mk_regmax<6>(input,quant,histo,opened,neighbourhood, + labeled,proj,colormap,mean,stats); break; + case '7': mk_regmax<7>(input,quant,histo,opened,neighbourhood, + labeled,proj,colormap,mean,stats); break; + case '8': mk_regmax<8>(input,quant,histo,opened,neighbourhood, + labeled,proj,colormap,mean,stats); break; + default: usage(); break; + } } else usage(); -- 1.5.6.5
14 years, 1 month
1
0
0
0
last-svn-commit-25-g1dff8cf Extend the histogram visualization tools for new projection concept.
by Yann Jacquelet
* green/mln/display/project_histo.hh (project2_histo): New functions that keep the max of the histogram or the class associate to it while projecting along a direction. * green/mln/display/project_histo.hh (project3_histo): New functions that keep the color of the class associate to the histogram maximum while projecting along a direction. * green/mln/display/display_histo.hh: New interface functions for project2_histo and project3_histo. --- milena/sandbox/ChangeLog | 13 + milena/sandbox/green/mln/display/display_histo.hh | 50 +++ milena/sandbox/green/mln/display/project_histo.hh | 344 +++++++++++++++++++++ 3 files changed, 407 insertions(+), 0 deletions(-) diff --git a/milena/sandbox/ChangeLog b/milena/sandbox/ChangeLog index f34508b..b9d40cb 100644 --- a/milena/sandbox/ChangeLog +++ b/milena/sandbox/ChangeLog @@ -1,5 +1,18 @@ 2010-01-05 Yann Jacquelet <jacquelet(a)lrde.epita.fr> + Extend the histogram visualization tools for new projection concept. + + * green/mln/display/project_histo.hh (project2_histo): New functions + that keep the max of the histogram or the class associate to it while + projecting along a direction. + * green/mln/display/project_histo.hh (project3_histo): New functions + that keep the color of the class associate to the histogram maximum + while projecting along a direction. + * green/mln/display/display_histo.hh: New interface functions for + project2_histo and project3_histo. + +2010-01-05 Yann Jacquelet <jacquelet(a)lrde.epita.fr> + Build translation table between number of pixels and percentage of pixels in image for the scribo database. diff --git a/milena/sandbox/green/mln/display/display_histo.hh b/milena/sandbox/green/mln/display/display_histo.hh index 1fd5da4..2ba0b61 100644 --- a/milena/sandbox/green/mln/display/display_histo.hh +++ b/milena/sandbox/green/mln/display/display_histo.hh @@ -33,6 +33,8 @@ # include <mln/display/project_histo.hh> # include <mln/fun/v2v/log.hh> # include <mln/value/int_u8.hh> +# include <mln/value/rgb8.hh> +# include <mln/value/label_8.hh> /// \file @@ -55,6 +57,20 @@ namespace mln image2d<value::int_u8> display_histo3d_unsigned(const image3d<unsigned>& histo); + image2d<value::int_u8> + display2_histo3d_unsigned(const image3d<unsigned>& histo); + + image2d<value::label_8> + display2_histo3d_unsigned(const image3d<unsigned>& histo, + const image3d<value::label_8>& label); + + image2d<value::rgb8> + display3_histo3d_unsigned(const image3d<unsigned>& histo); + + image2d<value::rgb8> + display3_histo3d_unsigned(const image3d<unsigned>& histo, + const image3d<value::label_8>& label); + #ifndef MLN_INCLUDE_ONLY /// \brief Allow the visualization of a 3d histogram by projection. @@ -86,6 +102,40 @@ namespace mln return proj_int; } + image2d<value::int_u8> + display2_histo3d_unsigned(const image3d<unsigned>& histo) + { + image2d<value::int_u8> proj = project2_histo<0>(histo); + + return proj; + } + + image2d<value::label_8> + display2_histo3d_unsigned(const image3d<unsigned>& histo, + const image3d<value::label_8>& label) + { + image2d<value::label_8> proj = project2_histo<0>(histo, label); + + return proj; + } + + image2d<value::rgb8> + display3_histo3d_unsigned(const image3d<unsigned>& histo) + { + image2d<value::rgb8> proj = project3_histo<0>(histo); + + return proj; + } + + image2d<value::rgb8> + display3_histo3d_unsigned(const image3d<unsigned>& histo, + const image3d<value::label_8>& label) + { + image2d<value::rgb8> proj = project3_histo<0>(histo, label); + + return proj; + } + #endif // ! MLN_INCLUDE_ONLY diff --git a/milena/sandbox/green/mln/display/project_histo.hh b/milena/sandbox/green/mln/display/project_histo.hh index f0e6858..d842c70 100644 --- a/milena/sandbox/green/mln/display/project_histo.hh +++ b/milena/sandbox/green/mln/display/project_histo.hh @@ -37,6 +37,12 @@ # include <mln/accu/image/take.hh> # include <mln/accu/image/to_result.hh> +# include <mln/opt/at.hh> + +# include <mln/value/int_u8.hh> +# include <mln/value/rgb8.hh> +# include <mln/value/label_8.hh> + /// \file /// /// \brief Allow the visualization of 3d histogram. @@ -54,6 +60,10 @@ namespace mln image2d<mln_result(A)> project_histo(const image3d<V>& histo); + template <typename A, unsigned direction, typename V> + image2d<mln_result(A)> + project2_histo(const image3d<V>& histo); + # ifndef MLN_INCLUDE_ONLY /// \brief Allow the visualization of 3d histogram. @@ -86,6 +96,340 @@ namespace mln return accu::image::to_result(histo_accu); } + template <unsigned direction> + image2d<value::int_u8> + project2_histo(const image3d<unsigned>& histo) + { + image2d<value::int_u8> result; + + if (0 == direction) // blue + { + image2d<value::int_u8> arg_max(histo.ncols(), histo.nslices()); + + for (unsigned j = 0; j < histo.ncols(); ++j) + for (unsigned i = 0; i < histo.nslices(); ++i) + { + unsigned max = 0; // minimum as possible + signed pos = -1; + + for (unsigned k = 0; k < histo.nrows(); ++k) + { + if (max <= opt::at(histo,i,j,k)) + { + max = opt::at(histo,i,j,k); + pos = k; + } + } + + opt::at(arg_max,i,j) = pos; + } + + result = arg_max; + } + else if (1 == direction) // red + { + image2d<value::int_u8> arg_max(histo.nrows(), histo.nslices()); + + for (unsigned j = 0; j < histo.nslices(); ++j) + for (unsigned i = 0; i < histo.nrows(); ++i) + { + unsigned max = 0; // minimum as possible + signed pos = -1; + + for (unsigned k = 0; k < histo.ncols(); ++k) + { + if (max <= opt::at(histo,i,j,k)) + { + max = opt::at(histo,i,j,k); + pos = k; + } + } + + opt::at(arg_max,i,j) = pos; + } + + result = arg_max; + } + else // 2 == direction // green + { + image2d<value::int_u8> arg_max(histo.nrows(), histo.ncols()); + + for (unsigned j = 0; j < histo.ncols(); ++j) + for (unsigned i = 0; i < histo.nrows(); ++i) + { + unsigned max = 0; // minimum as possible + signed pos = -1; + + for (unsigned k = 0; k < histo.nslices(); ++k) + { + if (max <= opt::at(histo,i,j,k)) + { + max = opt::at(histo,i,j,k); + pos = k; + } + } + + opt::at(arg_max,i,j) = pos; + } + + result = arg_max; + } + + return result; + } + + template <unsigned direction> + image2d<value::label_8> + project2_histo(const image3d<unsigned>& histo, + const image3d<value::label_8>& label) + { + image2d<value::label_8> result; + + if (0 == direction) // blue + { + image2d<value::label_8> arg_max(histo.ncols(), histo.nslices()); + + for (unsigned j = 0; j < histo.ncols(); ++j) + for (unsigned i = 0; i < histo.nslices(); ++i) + { + unsigned max = 0; // minimum as possible + signed pos = -1; + + for (unsigned k = 0; k < histo.nrows(); ++k) + { + if (max <= opt::at(histo,i,j,k)) + { + max = opt::at(histo,i,j,k); + pos = k; + } + } + + opt::at(arg_max,i,j) = opt::at(label,i,j,pos); + } + + result = arg_max; + } + else if (1 == direction) // red + { + image2d<value::label_8> arg_max(histo.nrows(), histo.nslices()); + + for (unsigned j = 0; j < histo.nslices(); ++j) + for (unsigned i = 0; i < histo.nrows(); ++i) + { + unsigned max = 0; // minimum as possible + signed pos = -1; + + for (unsigned k = 0; k < histo.ncols(); ++k) + { + if (max <= opt::at(histo,i,j,k)) + { + max = opt::at(histo,i,j,k); + pos = k; + } + } + + opt::at(arg_max,i,j) = opt::at(label,pos,i,j); + } + + result = arg_max; + } + else // 2 == direction // green + { + image2d<value::label_8> arg_max(histo.nrows(), histo.ncols()); + + for (unsigned j = 0; j < histo.ncols(); ++j) + for (unsigned i = 0; i < histo.nrows(); ++i) + { + unsigned max = 0; // minimum as possible + signed pos = -1; + + for (unsigned k = 0; k < histo.nslices(); ++k) + { + if (max <= opt::at(histo,i,j,k)) + { + max = opt::at(histo,i,j,k); + pos = k; + } + } + + opt::at(arg_max,i,j) = opt::at(label,i,pos,j); + } + + result = arg_max; + } + + return result; + } + + + // FIXME ... determine the color of each class. + template <unsigned direction> + image2d<value::rgb8> + project3_histo(const image3d<unsigned>& histo, + const image3d<value::label_8>& label) + { + image2d<value::rgb8> result; + + if (0 == direction) // blue + { + image2d<value::rgb8> arg_max(histo.ncols(), histo.nslices()); + + for (unsigned j = 0; j < histo.ncols(); ++j) + for (unsigned i = 0; i < histo.nslices(); ++i) + { + unsigned max = 0; // minimum as possible + signed pos = -1; + + for (unsigned k = 0; k < histo.nrows(); ++k) + { + if (max <= opt::at(histo,i,j,k)) + { + max = opt::at(histo,i,j,k); + pos = k; + } + } + + opt::at(arg_max,i,j) = value::rgb8(i,j,pos); + } + + result = arg_max; + } + else if (1 == direction) // red + { + image2d<value::rgb8> arg_max(histo.nrows(), histo.nslices()); + + for (unsigned j = 0; j < histo.nslices(); ++j) + for (unsigned i = 0; i < histo.nrows(); ++i) + { + unsigned max = 0; // minimum as possible + signed pos = -1; + + for (unsigned k = 0; k < histo.ncols(); ++k) + { + if (max <= opt::at(histo,i,j,k)) + { + max = opt::at(histo,i,j,k); + pos = k; + } + } + + opt::at(arg_max,i,j) = value::rgb8(pos,i,j); + } + + result = arg_max; + } + else // 2 == direction // green + { + image2d<value::rgb8> arg_max(histo.nrows(), histo.ncols()); + + for (unsigned j = 0; j < histo.ncols(); ++j) + for (unsigned i = 0; i < histo.nrows(); ++i) + { + unsigned max = 0; // minimum as possible + signed pos = -1; + + for (unsigned k = 0; k < histo.nslices(); ++k) + { + if (max <= opt::at(histo,i,j,k)) + { + max = opt::at(histo,i,j,k); + pos = k; + } + } + + // FIXME ... how to fix the n of rgb + opt::at(arg_max,i,j) = value::rgb8(i,pos,j); + } + + result = arg_max; + } + + return result; + } + + template <unsigned direction> + image2d<value::rgb8> + project3_histo(const image3d<unsigned>& histo) + { + image2d<value::rgb8> result; + + if (0 == direction) // blue + { + image2d<value::rgb8> arg_max(histo.ncols(), histo.nslices()); + + for (unsigned j = 0; j < histo.ncols(); ++j) + for (unsigned i = 0; i < histo.nslices(); ++i) + { + unsigned max = 0; // minimum as possible + signed pos = -1; + + for (unsigned k = 0; k < histo.nrows(); ++k) + { + if (max <= opt::at(histo,i,j,k)) + { + max = opt::at(histo,i,j,k); + pos = k; + } + } + + opt::at(arg_max,i,j) = value::rgb8(i,j,pos); + } + + result = arg_max; + } + else if (1 == direction) // red + { + image2d<value::rgb8> arg_max(histo.nrows(), histo.nslices()); + + for (unsigned j = 0; j < histo.nslices(); ++j) + for (unsigned i = 0; i < histo.nrows(); ++i) + { + unsigned max = 0; // minimum as possible + signed pos = -1; + + for (unsigned k = 0; k < histo.ncols(); ++k) + { + if (max <= opt::at(histo,i,j,k)) + { + max = opt::at(histo,i,j,k); + pos = k; + } + } + + opt::at(arg_max,i,j) = value::rgb8(pos,i,j); + } + + result = arg_max; + } + else // 2 == direction // green + { + image2d<value::rgb8> arg_max(histo.nrows(), histo.ncols()); + + for (unsigned j = 0; j < histo.ncols(); ++j) + for (unsigned i = 0; i < histo.nrows(); ++i) + { + unsigned max = 0; // minimum as possible + signed pos = -1; + + for (unsigned k = 0; k < histo.nslices(); ++k) + { + if (max <= opt::at(histo,i,j,k)) + { + max = opt::at(histo,i,j,k); + pos = k; + } + } + + // FIXME ... how to fix the n of rgb + opt::at(arg_max,i,j) = value::rgb8(i,pos,j); + } + + result = arg_max; + } + + return result; + } + # endif // ! MLN_INCLUDE_ONLY -- 1.5.6.5
14 years, 1 month
1
0
0
0
last-svn-commit-24-g40063b8 Build translation table between number of pixels and percentage of pixels in image for the scribo database.
by Yann Jacquelet
* green/demo/labeling/regional_maxima/threshold.txt: New translation table. --- milena/sandbox/ChangeLog | 8 ++++++++ .../demo/labeling/regional_maxima/thresholds.txt | 15 +++++++++++++++ 2 files changed, 23 insertions(+), 0 deletions(-) diff --git a/milena/sandbox/ChangeLog b/milena/sandbox/ChangeLog index cbd9cdc..f34508b 100644 --- a/milena/sandbox/ChangeLog +++ b/milena/sandbox/ChangeLog @@ -1,5 +1,13 @@ 2010-01-05 Yann Jacquelet <jacquelet(a)lrde.epita.fr> + Build translation table between number of pixels and percentage of + pixels in image for the scribo database. + + * green/demo/labeling/regional_maxima/threshold.txt: New translation + table. + +2010-01-05 Yann Jacquelet <jacquelet(a)lrde.epita.fr> + Split the regional maxima binary in small atomic binaries. * green/tools/annotating/histo: New directory. diff --git a/milena/sandbox/green/demo/labeling/regional_maxima/thresholds.txt b/milena/sandbox/green/demo/labeling/regional_maxima/thresholds.txt index ddf5ca7..58f3e6a 100644 --- a/milena/sandbox/green/demo/labeling/regional_maxima/thresholds.txt +++ b/milena/sandbox/green/demo/labeling/regional_maxima/thresholds.txt @@ -5,9 +5,24 @@ image = 1169 x 1567 = 1831823 ----------------------- 0.05 % | 1000.00 1.00 % | 18318.23 + 2.00 % | 36636.46 + 3.00 % | 54954.69 + 4.00 % | 73272.92 5.00 % | 91591.15 + 6.00 % | 109909.38 + 7.00 % | 128227.61 + 8.00 % | 146545.84 + 9.00 % | 164864.07 10.00 % | 183182.30 + 11.00 % | 201500.53 + 12.00 % | 219818.76 + 13.00 % | 238136.99 + 14.00 % | 256455.22 15.00 % | 274773.45 + 16.00 % | 293091.68 + 17.00 % | 311409.91 + 18.00 % | 329728.14 + 19.00 % | 348046.37 20.00 % | 366364.60 25.00 % | 457955.75 30.00 % | 549546.90 -- 1.5.6.5
14 years, 1 month
1
0
0
0
last-svn-commit-23-gfdf0f76 Split the regional maxima binary in small atomic binaries.
by Yann Jacquelet
* green/tools/annotating/histo: New directory. * green/tools/annotating/histo/Makefile.am: New Makefile. * green/tools/annotating/histo/histo.cc: New source file. * green/tools/annotating/opening: New directory. * green/tools/annotating/opening/Makefile.am: New Makefile. * green/tools/annotating/opening/opening.cc: New source file. * green/tools/annotating/regmax: New directory. * green/tools/annotating/regmax/Makefile.am: New Makefile. * green/tools/annotating/regmax/regmax.cc: New source file. --- milena/sandbox/ChangeLog | 14 ++ .../annotating/histo}/Makefile.am | 9 +- .../sandbox/green/tools/annotating/histo/histo.cc | 121 ++++++++++++++++++ .../annotating/opening}/Makefile.am | 9 +- .../green/tools/annotating/opening/opening.cc | 79 ++++++++++++ .../annotating/regmax}/Makefile.am | 9 +- .../green/tools/annotating/regmax/regmax.cc | 133 ++++++++++++++++++++ 7 files changed, 359 insertions(+), 15 deletions(-) copy milena/sandbox/green/{exp/annotating/nb_color => tools/annotating/histo}/Makefile.am (96%) create mode 100644 milena/sandbox/green/tools/annotating/histo/histo.cc copy milena/sandbox/green/{exp/annotating/nb_color => tools/annotating/opening}/Makefile.am (96%) create mode 100644 milena/sandbox/green/tools/annotating/opening/opening.cc copy milena/sandbox/green/{exp/annotating/nb_color => tools/annotating/regmax}/Makefile.am (96%) create mode 100644 milena/sandbox/green/tools/annotating/regmax/regmax.cc diff --git a/milena/sandbox/ChangeLog b/milena/sandbox/ChangeLog index 0947048..cbd9cdc 100644 --- a/milena/sandbox/ChangeLog +++ b/milena/sandbox/ChangeLog @@ -1,3 +1,17 @@ +2010-01-05 Yann Jacquelet <jacquelet(a)lrde.epita.fr> + + Split the regional maxima binary in small atomic binaries. + + * green/tools/annotating/histo: New directory. + * green/tools/annotating/histo/Makefile.am: New Makefile. + * green/tools/annotating/histo/histo.cc: New source file. + * green/tools/annotating/opening: New directory. + * green/tools/annotating/opening/Makefile.am: New Makefile. + * green/tools/annotating/opening/opening.cc: New source file. + * green/tools/annotating/regmax: New directory. + * green/tools/annotating/regmax/Makefile.am: New Makefile. + * green/tools/annotating/regmax/regmax.cc: New source file. + 2009-12-23 Yann Jacquelet <jacquelet(a)lrde.epita.fr> Write the opening volume thresholds for the scribo image mp00082c.ppm. diff --git a/milena/sandbox/green/exp/annotating/nb_color/Makefile.am b/milena/sandbox/green/tools/annotating/histo/Makefile.am similarity index 96% copy from milena/sandbox/green/exp/annotating/nb_color/Makefile.am copy to milena/sandbox/green/tools/annotating/histo/Makefile.am index 8e204c6..8cd7511 100644 --- a/milena/sandbox/green/exp/annotating/nb_color/Makefile.am +++ b/milena/sandbox/green/tools/annotating/histo/Makefile.am @@ -6,7 +6,6 @@ # TOOLS # ######### -LOADLIBES= -lboost_filesystem INCLUDES= -I$(HOME)/svn/oln/trunk/milena/sandbox/green #CXXFLAGS= -ggdb -O0 -Wall -W -pedantic -ansi -pipe $(INCLUDES) #CXXFLAGS= -DNDEBUG -O1 -Wall -W -pedantic -ansi -pipe $(INCLUDES) @@ -16,17 +15,17 @@ RM= rm MKDIR= mkdir -p CP= cp -SOURCE_PATTERN= green/exp -BUILD__PATTERN= green/build/exp +SOURCE_PATTERN= green/tools +BUILD__PATTERN= green/build/tools ifeq ($(findstring $(BUILD__PATTERN),$(PWD)), $(BUILD__PATTERN)) # Case where make is done from build directory. SOURCE_DIR= $(subst $(BUILD__PATTERN),$(SOURCE_PATTERN),$(PWD)) -BUILD__DIR= $(PWD)/ +BUILD__DIR= $(PWD) else # Case where make is done from source directory. -SOURCE_DIR= $(PWD)/ +SOURCE_DIR= $(PWD) BUILD__DIR= $(subst $(SOURCE_PATTERN),$(BUILD__PATTERN),$(PWD)) endif diff --git a/milena/sandbox/green/tools/annotating/histo/histo.cc b/milena/sandbox/green/tools/annotating/histo/histo.cc new file mode 100644 index 0000000..ab0b8af --- /dev/null +++ b/milena/sandbox/green/tools/annotating/histo/histo.cc @@ -0,0 +1,121 @@ +// TOOLS ==> Color histogram + +#include <iostream> + +#include <mln/accu/stat/histo3d_rgb.hh> + +#include <mln/core/macros.hh> +#include <mln/core/image/image2d.hh> +#include <mln/core/image/image3d.hh> +#include <mln/core/image/dmorph/image_if.hh> + +#include <mln/data/compute.hh> +#include <mln/data/transform.hh> + +#include <mln/display/display_histo.hh> + +#include <mln/fun/v2v/rgb8_to_rgbn.hh> + +#include <mln/io/dump/save.hh> +#include <mln/io/pbm/load.hh> +#include <mln/io/pbm/save.hh> +#include <mln/io/pgm/load.hh> +#include <mln/io/pgm/save.hh> +#include <mln/io/ppm/load.hh> +#include <mln/io/ppm/save.hh> + +#include <mln/opt/at.hh> + +#include <mln/pw/value.hh> + +#include <mln/value/rgb8.hh> +#include <mln/value/rgb.hh> + + +template <unsigned n> +void mk_histo(const std::string& input, + const std::string& output, + const std::string& histo, + const std::string& mask) +{ + typedef mln::value::int_u8 t_int_u8; + typedef mln::value::rgb8 t_rgb8; + typedef mln::value::rgb<n> t_rgbn; + typedef mln::image2d<t_int_u8> t_image2d_int_u8; + typedef mln::image2d<t_rgb8> t_image2d_rgb8; + typedef mln::image2d<t_rgbn> t_image2d_rgbn; + typedef mln::image2d<bool> t_image2d_bool; + typedef mln::image3d<unsigned> t_histo3d; + typedef mln::fun::v2v::rgb8_to_rgbn<n> t_rgb8_to_rgbn; + typedef mln::accu::meta::stat::histo3d_rgb t_histo3d_fun; + + // START OF IMAGE PROCESSING CHAIN + t_image2d_rgb8 i0_input; // input rgb8 + t_image2d_rgbn i1_input; // input rgbn + t_image2d_bool m0_input; // mask input + t_histo3d h1_input; // histo input + t_image2d_int_u8 p1_histo; // histo proj + + mln::io::ppm::load(i0_input, input.c_str()); + i1_input = mln::data::transform(i0_input, t_rgb8_to_rgbn()); + + if (0 < mask.size()) + { + mln::io::pbm::load(m0_input, mask.c_str()); + h1_input = mln::data::compute(t_histo3d_fun(), + (i1_input | mln::pw::value(m0_input)).rw()); + } + else + { + h1_input = mln::data::compute(t_histo3d_fun(), i1_input); + } + // END OF IMAGE PROCESSING CHAIN + + // BEGIN DUMPING + p1_histo = mln::display::display_histo3d_unsigned(h1_input); + mln::io::dump::save(h1_input, histo.c_str()); + mln::io::pgm::save(p1_histo, output.c_str()); + // END DUMPING +} + + +void usage() +{ + std::cout << std::endl; + std::cout << "histo input.ppm q out.ppm histo.dump [msk.pbm]" << std::endl; + std::cout << "where" << std::endl; + std::cout << "input.ppm is the 8 bits color ppm image" << std::endl; + std::cout << "q is the degree of quanification {2,3,4,5,6,7,8}" << std::endl; + std::cout << "out.pgm is the r/g projection of the histogram" << std::endl; + std::cout << "out.dump is the quantified color histogram" << std::endl; + std::cout << "msk.pbm is the mask which select the pixels" << std::endl; + std::cout << std::endl; +} + +int main(int argc, char* args[]) +{ + if (5 == argc || 6 == argc) + { + const std::string input(args[1]); + const char q = args[2][0]; + const std::string output(args[3]); + const std::string histo(args[4]); + const std::string mask(6 == argc? args[5] : ""); + + switch(q) + { + case '2': mk_histo<2>(input, output, histo, mask); break; + case '3': mk_histo<3>(input, output, histo, mask); break; + case '4': mk_histo<4>(input, output, histo, mask); break; + case '5': mk_histo<5>(input, output, histo, mask); break; + case '6': mk_histo<6>(input, output, histo, mask); break; + case '7': mk_histo<7>(input, output, histo, mask); break; + case '8': mk_histo<8>(input, output, histo, mask); break; + default: usage(); break; + } + } + else + usage(); + + return 0; +} diff --git a/milena/sandbox/green/exp/annotating/nb_color/Makefile.am b/milena/sandbox/green/tools/annotating/opening/Makefile.am similarity index 96% copy from milena/sandbox/green/exp/annotating/nb_color/Makefile.am copy to milena/sandbox/green/tools/annotating/opening/Makefile.am index 8e204c6..8cd7511 100644 --- a/milena/sandbox/green/exp/annotating/nb_color/Makefile.am +++ b/milena/sandbox/green/tools/annotating/opening/Makefile.am @@ -6,7 +6,6 @@ # TOOLS # ######### -LOADLIBES= -lboost_filesystem INCLUDES= -I$(HOME)/svn/oln/trunk/milena/sandbox/green #CXXFLAGS= -ggdb -O0 -Wall -W -pedantic -ansi -pipe $(INCLUDES) #CXXFLAGS= -DNDEBUG -O1 -Wall -W -pedantic -ansi -pipe $(INCLUDES) @@ -16,17 +15,17 @@ RM= rm MKDIR= mkdir -p CP= cp -SOURCE_PATTERN= green/exp -BUILD__PATTERN= green/build/exp +SOURCE_PATTERN= green/tools +BUILD__PATTERN= green/build/tools ifeq ($(findstring $(BUILD__PATTERN),$(PWD)), $(BUILD__PATTERN)) # Case where make is done from build directory. SOURCE_DIR= $(subst $(BUILD__PATTERN),$(SOURCE_PATTERN),$(PWD)) -BUILD__DIR= $(PWD)/ +BUILD__DIR= $(PWD) else # Case where make is done from source directory. -SOURCE_DIR= $(PWD)/ +SOURCE_DIR= $(PWD) BUILD__DIR= $(subst $(SOURCE_PATTERN),$(BUILD__PATTERN),$(PWD)) endif diff --git a/milena/sandbox/green/tools/annotating/opening/opening.cc b/milena/sandbox/green/tools/annotating/opening/opening.cc new file mode 100644 index 0000000..3e1dbf2 --- /dev/null +++ b/milena/sandbox/green/tools/annotating/opening/opening.cc @@ -0,0 +1,79 @@ +// TOOLS ==> histogram filtering + +#include <iostream> + +#include <mln/accu/stat/histo3d_rgb.hh> + +#include <mln/core/macros.hh> +#include <mln/core/alias/neighb3d.hh> +#include <mln/core/image/image2d.hh> +#include <mln/core/image/image3d.hh> + +#include <mln/data/compute.hh> + +#include <mln/display/display_histo.hh> + +#include <mln/io/dump/load.hh> +#include <mln/io/dump/save.hh> +#include <mln/io/pgm/load.hh> +#include <mln/io/pgm/save.hh> + +#include <mln/morpho/opening/volume.hh> + +#include <mln/value/int_u8.hh> + +void mk_opening(const std::string& input, + const unsigned min_vol, + const std::string& output, + const std::string& opened) +{ + typedef mln::value::int_u8 t_int_u8; + typedef mln::image2d<t_int_u8> t_image2d_int_u8; + typedef mln::image3d<unsigned> t_histo3d; + typedef mln::accu::meta::stat::histo3d_rgb t_histo3d_fun; + + // START OF IMAGE PROCESSING CHAIN + t_histo3d h1_input; // histo input + t_histo3d h2_input; // histo input + t_image2d_int_u8 p1_histo; // histo proj + + mln::io::dump::load(h1_input, input.c_str()); + h2_input = mln::morpho::opening::volume(h1_input, mln::c6(), min_vol); + // END OF IMAGE PROCESSING CHAIN + + // BEGIN DUMPING + p1_histo = mln::display::display_histo3d_unsigned(h2_input); + mln::io::dump::save(h2_input, opened.c_str()); + mln::io::pgm::save(p1_histo, output.c_str()); + // END DUMPING +} + + +void usage() +{ + std::cout << std::endl; + std::cout << "opening input.dump v out.dump out.ppm" << std::endl; + std::cout << "where" << std::endl; + std::cout << "input.dump is the 3d color input histo" << std::endl; + std::cout << "v is the minimum size of each composant" << std::endl; + std::cout << "out.pgm is the r/g proj of the opened histogram" << std::endl; + std::cout << "out.dump is the opened histogram" << std::endl; + std::cout << std::endl; +} + +int main(int argc, char* args[]) +{ + if (5 == argc) + { + const std::string input(args[1]); + const unsigned min_vol = atoi(args[2]); + const std::string output(args[3]); + const std::string opened(args[4]); + + mk_opening(input, min_vol, output, opened); + } + else + usage(); + + return 0; +} diff --git a/milena/sandbox/green/exp/annotating/nb_color/Makefile.am b/milena/sandbox/green/tools/annotating/regmax/Makefile.am similarity index 96% copy from milena/sandbox/green/exp/annotating/nb_color/Makefile.am copy to milena/sandbox/green/tools/annotating/regmax/Makefile.am index 8e204c6..8cd7511 100644 --- a/milena/sandbox/green/exp/annotating/nb_color/Makefile.am +++ b/milena/sandbox/green/tools/annotating/regmax/Makefile.am @@ -6,7 +6,6 @@ # TOOLS # ######### -LOADLIBES= -lboost_filesystem INCLUDES= -I$(HOME)/svn/oln/trunk/milena/sandbox/green #CXXFLAGS= -ggdb -O0 -Wall -W -pedantic -ansi -pipe $(INCLUDES) #CXXFLAGS= -DNDEBUG -O1 -Wall -W -pedantic -ansi -pipe $(INCLUDES) @@ -16,17 +15,17 @@ RM= rm MKDIR= mkdir -p CP= cp -SOURCE_PATTERN= green/exp -BUILD__PATTERN= green/build/exp +SOURCE_PATTERN= green/tools +BUILD__PATTERN= green/build/tools ifeq ($(findstring $(BUILD__PATTERN),$(PWD)), $(BUILD__PATTERN)) # Case where make is done from build directory. SOURCE_DIR= $(subst $(BUILD__PATTERN),$(SOURCE_PATTERN),$(PWD)) -BUILD__DIR= $(PWD)/ +BUILD__DIR= $(PWD) else # Case where make is done from source directory. -SOURCE_DIR= $(PWD)/ +SOURCE_DIR= $(PWD) BUILD__DIR= $(subst $(SOURCE_PATTERN),$(BUILD__PATTERN),$(PWD)) endif diff --git a/milena/sandbox/green/tools/annotating/regmax/regmax.cc b/milena/sandbox/green/tools/annotating/regmax/regmax.cc new file mode 100644 index 0000000..2079bc4 --- /dev/null +++ b/milena/sandbox/green/tools/annotating/regmax/regmax.cc @@ -0,0 +1,133 @@ +// TOOLS ==> regmax on histo + +#include <iostream> + +#include <mln/accu/stat/histo3d_rgb.hh> + +#include <mln/core/macros.hh> +#include <mln/core/alias/neighb3d.hh> +#include <mln/core/image/image2d.hh> +#include <mln/core/image/image3d.hh> + +#include <mln/data/compute.hh> + +#include <mln/debug/println.hh> +#include <mln/display/display_histo.hh> + +#include <mln/io/dump/load.hh> +#include <mln/io/dump/save.hh> +#include <mln/io/pgm/load.hh> +#include <mln/io/pgm/save.hh> +#include <mln/io/ppm/save.hh> + +#include <mln/labeling/regional_maxima.hh> + +#include <mln/morpho/opening/volume.hh> + +#include <mln/value/label_8.hh> +#include <mln/value/int_u8.hh> +#include <mln/value/rgb8.hh> + +template <unsigned n> +struct t_labeling_rgbn : mln::Function_v2v< t_labeling_rgbn<n> > +{ + typedef mln::value::rgb<n> t_rgbn; + typedef mln::value::label_8 t_lbl8; + typedef t_rgbn argument; + typedef t_lbl8 result; + typedef mln::image3d<t_lbl8> t_label; + + const t_label& _label; + + t_labeling_rgbn(const t_label& label) : _label(label) {} + + result operator()(const argument& c) const + { + t_lbl8 tmp = mln::opt::at(_label, c.blue(), c.red(), c.green()); + + return tmp; + } +}; + +void mk_regmax(const std::string& input, + const std::string& quant, + const std::string& histo, + const std::string& label, + const std::string& output) +{ + typedef mln::value::label_8 t_lbl8; + typedef mln::value::rgb8 t_rgb8; + typedef mln::value::rgbn t_rgbn; + typedef mln::value::int_u8 t_int_u8; + typedef mln::algebra::vec<3,float> t_v3f; + typedef mln::image2d<t_int_u8> t_image2d_int_u8; + typedef mln::image2d<t_rgb8> t_image2d_rgb8; + typedef mln::image3d<t_lbl8> t_image3d_lbl8; + typedef mln::image2d<t_lbl8> t_image2d_lbl8; + typedef mln::image3d<unsigned> t_histo3d; + typedef mln::accu::meta::stat::histo3d_rgb t_histo3d_fun; + typedef mln::accu::stat::mean<t_v3f,t_v3f,t_v3f> t_mean; + typedef mln::util::array<t_v3f> t_mean_array; + + t_image2d_rgb8 i0_input; // input img + t_image2d_rgbn i1_input; // quant img + t_histo3d h2_input; // opened histo +// t_image2d_int_u8 p2_label; // histo proj + t_image2d_lbl8 p2_label; // histo proj +// t_image2d_rgb8 p2_label; // histo proj + t_image3d_lbl8 l2_histo; // label histo + t_mean_array m2_label; // palette + + t_lbl8 n_lbl; // nb class + + // BEGIN LOADING + mln::io::ppm::load(i0_input, input.c_str()); + mln::io::ppm::load(i1_input, quant.c_str()); + mln::io::dump::load(h2_input, histo.c_str()); + // END LOADING + + // BEGIN IMAGE PROCESSING + l2_histo = mln::labeling::regional_maxima(h2_input, mln::c6(), n_lbl); + // END IMAGE PROCESSING + + // BEGIN SAVING + mln::debug::println(h2_input); + mln::io::dump::save(l2_histo, labeled.c_str()); + + l2_input = mln::data::transform(i1_input, t_labeling_rgbn<n>(l2_histo)); + m2_label = mln::labeling::compute(t_mean(), i0_input, l2_input, n_labels); + p2_label =mln::display::display3_histo3d_unsigned(h2_input,l2_histo,m2_label); + +// mln::io::pgm::save(p2_label, output.c_str()); + mln::io::ppm::save(p2_label, output.c_str()); + std::cout << "Nb classes : " << n_lbl << std::endl; + // END SAVING +} + + +void usage() +{ + std::cout << std::endl; + std::cout << "regmax input.dump out.dump out.ppm" << std::endl; + std::cout << "where" << std::endl; + std::cout << "input.dump is opened histo" << std::endl; + std::cout << "out.pgm is the r/g proj of the opened histogram" << std::endl; + std::cout << "out.dump is the labeled histogram" << std::endl; + std::cout << std::endl; +} + +int main(int argc, char* args[]) +{ + if (4 == argc) + { + const std::string input(args[1]); + const std::string output(args[2]); + const std::string labeled(args[3]); + + mk_regmax(input, output, labeled); + } + else + usage(); + + return 0; +} -- 1.5.6.5
14 years, 1 month
1
0
0
0
last-svn-commit-22-ga3cbabf Write the opening volume thresholds for the scribo image mp00082c.ppm.
by Yann Jacquelet
* green/demo/labeling/regional_maxima/thresholds.txt: New documentation. --- milena/sandbox/ChangeLog | 6 ++++ .../demo/labeling/regional_maxima/thresholds.txt | 27 ++++++++++++++++++++ 2 files changed, 33 insertions(+), 0 deletions(-) create mode 100644 milena/sandbox/green/demo/labeling/regional_maxima/thresholds.txt diff --git a/milena/sandbox/ChangeLog b/milena/sandbox/ChangeLog index 48be011..0947048 100644 --- a/milena/sandbox/ChangeLog +++ b/milena/sandbox/ChangeLog @@ -1,5 +1,11 @@ 2009-12-23 Yann Jacquelet <jacquelet(a)lrde.epita.fr> + Write the opening volume thresholds for the scribo image mp00082c.ppm. + + * green/demo/labeling/regional_maxima/thresholds.txt: New documentation. + +2009-12-23 Yann Jacquelet <jacquelet(a)lrde.epita.fr> + Experiment various quantifications on regional maxima labeling. * green/doc/regional_maxima/cmp_quant/h0_input.pgm.gz: New histogram. diff --git a/milena/sandbox/green/demo/labeling/regional_maxima/thresholds.txt b/milena/sandbox/green/demo/labeling/regional_maxima/thresholds.txt new file mode 100644 index 0000000..ddf5ca7 --- /dev/null +++ b/milena/sandbox/green/demo/labeling/regional_maxima/thresholds.txt @@ -0,0 +1,27 @@ +image = 1169 x 1567 = 1831823 + + +% image | min_volume +----------------------- + 0.05 % | 1000.00 + 1.00 % | 18318.23 + 5.00 % | 91591.15 + 10.00 % | 183182.30 + 15.00 % | 274773.45 + 20.00 % | 366364.60 + 25.00 % | 457955.75 + 30.00 % | 549546.90 + 35.00 % | 641138.05 + 40.00 % | 732729.20 + 45.00 % | 824320.35 + 50.00 % | 915911.50 + 55.00 % | 1007502.65 + 60.00 % | 1099093.80 + 65.00 % | 1190684.95 + 70.00 % | 1282276.10 + 75.00 % | 1373867.25 + 80.00 % | 1465458.40 + 85.00 % | 1557049.55 + 90.00 % | 1648640.70 + 95.00 % | 1740231.85 +100.00 % | 1831823.00 -- 1.5.6.5
14 years, 1 month
1
0
0
0
← Newer
1
...
18
19
20
21
22
23
24
...
37
Older →
Jump to page:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
Results per page:
10
25
50
100
200