Chers collègues,
La prochaine session du séminaire Performance et Généricité du LRDE
(Laboratoire de Recherche et Développement de l'EPITA) aura lieu le
Mercredi 10 avril 2019 (11h -- 12h), Amphi 4.
Vous trouverez sur le site du séminaire [1] les prochaines séances,
les résumés, captations vidéos et planches des exposés précédents [2],
le détail de cette séance [3] ainsi que le plan d'accès [4].
[1] http://seminaire.lrde.epita.fr
[2] http://seminaire.lrde.epita.fr/Archives
[3] http://seminaire.lrde.epita.fr/2019-04-10
[4] http://www.lrde.epita.fr/wiki/Contact
Au programme du Mercredi 10 avril 2019 :
* 11h -- 12h: Deep Learning for Satellite Imagery: Semantic Segmentation,
Non-Rigid Alignment, and Self-Denoising
-- Guillaume Charpiat (TAU-team, INRIA Saclay / LRI - Université Paris-Sud)
https://www.lri.fr/~gcharpia/
Neural networks have been producing impressive results in computer
vision these last years, in image classification or segmentation in
particular. To be transferred to remote sensing, this tool needs
adaptation to its specifics: large images, many small objects per image,
keeping high-resolution output, unreliable ground truth (usually
mis-registered). We will review the work done in our group for remote
sensing semantic segmentation, explaining the evolution of our neural
net architecture design to face these challenges, and finally training a
network to register binary cadaster maps to RGB images while detecting
new buildings if any, in a multi-scale approach. We will show in
particular that it is possible to train on noisy datasets, and to make
predictions at an accuracy much better than the variance of the original
noise. To explain this phenomenon, we build theoretical tools to express
input similarity from the neural network point of view, and use them to
quantify data redundancy and associated expected denoising effects. If
time permits, we might also present work on hurricane track forecast
from reanalysis data (2-3D coverage of the Earth's surface with
temperature/pressure/etc. fields) using deep learning.
-- After a PhD thesis at ENS on shape statistics for image segmentation,
and a year in Bernhard Schölkopf's team at MPI Tübingen on kernel
methods for medical imaging, Guillaume Charpiat joined INRIA
Sophia-Antipolis to work on computer vision, and later INRIA Saclay to
work on machine learning. Lately, he has been focusing on deep learning,
with in particular remote sensing imagery as an application field.
L'entrée du séminaire est libre. Merci de bien vouloir diffuser cette
information le plus largement possible. N'hésitez pas à nous faire
parvenir vos suggestions d'orateurs.
--
Edwin Carlinet
Laboratoire R&D de l'EPITA (LRDE)