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Cybersecurity against attacks



Graph represents a networks
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Decompose different patterns

Understand the network

Identify patterns



State-of-the-Art

- Noble, J., Adams, N.: Real-time dynamic network anomaly detection. IEEE Intelligent Systems 33(2), 5–18 (2018)
- Hariharan, A., Gupta, A., Pal, T.: Camlpad: Cybersecurity autonomous machine
learning platform for anomaly detection. In: Future of Information and Communication Conference. pp. 705–720. Springer (2020)
- Bowman, B., Huang, H.H.: Towards next-generation cybersecurity with graph ai.
ACM SIGOPS Operating Systems Review 55(1), 61–67 (2021)
- Weifeng Liu, Sichao Fu, Yicong Zhou, Zheng-Jun Zha, and Liqiang Nie. Human activity
recognition by manifold regularization based dynamic graph convolutional networks.
Neurocomputing, 444:217–225, 2021.
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Statistical Approaches ML Approaches GCN Approaches

A real-time
network anomaly-detector 

(ReTiNA)

Traditional systems use 
elementary statistics

techniques and are often 
inaccurate

CAMLPAD model
anomalies are assigned an outlier 

score
ML-based techniques are supervised

algorithms

In network security, there are not 
much labeled data to train efficient 

classifiers

One of the best choice for graph data 
learning tasks

The Dynamic Graph
Neural Networks (DGNNs) are known 

to be an interesting tool to detect
anomalies in complex dynamic 

graphs



Why Spectral graph analysis?
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Dynamicity?



Spectral graph analysis
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Mathematical 
techniques 

Analyze graph properties

Studying the spectrum of 
the Laplacian Matrix

Feature extraction

λ0 λ1 λ𝑛𝑛…



What type of matrix used?
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The most commonly used matrix in spectral graph analysis is 
the Laplacian matrix.

Laplacian 
Matrix

Why Laplacian rather than other 
matrixes?

 Better spectral properties
 More robust to changes in the graph structure. 
 The spectrum of the Laplacian matrix are used in 

various applications of spectral graph analysis, 
such as clustering, community detection, and 
graph partitioning.



What type of matrix used?
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The most commonly used matrix in spectral graph analysis is 
the Laplacian matrix.

Laplacian 
Matrix

Why Laplacian rather than other 
matrixes?

 Better spectral properties
 More robust to changes in the graph structure. 
 The spectrum of the Laplacian matrix are used in 

various applications of spectral graph analysis, 
such as clustering, community detection, and 
graph partitioning.

Laplacian Matrix

𝐿𝐿 = 𝐷𝐷 − 𝐴𝐴

𝐿𝐿 = − =

𝐴𝐴𝑖𝑖,𝑗𝑗 ≔ �1 𝑖𝑖𝑖𝑖 𝑖𝑖 ≠ 𝑗𝑗  and 𝑣𝑣𝑖𝑖  ~ 𝑣𝑣𝑗𝑗
0 otherwise



What is a spectrum?

Chung, F. R. (1997). Spectral graph theory (Vol. 92). American Mathematical Soc. 10

the spectrum refers to the set of eigenvalues of the 
Laplacian matrix.

Spectrum

Eigenvalues

λ0 λ1 λ𝑛𝑛…



Spectrum Interesting eigenvalues

- De Abreu, N. M. M. (2007). Old and new results on algebraic connectivity of graphs. Linear algebra and its 
applications, 423(1), 53-73.
- Bauer, F., Jost, J.: Bipartite and neighborhood graphs and the spectrum of the
normalized graph laplacian. arXiv preprint arXiv:0910.3118 (2009) 11

Zero eigenvalues Algebraic 
connectivity

Largest 
eigenvalues



Spectrum Interesting EV - Example
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Research Question
How can we benefit from 
spectral graph analysis to 
identify and detect 
cyberattacks over the 
network? Spectral

Graph
Analysis



Dynamicity of graph
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…

from graph to evolutions

Evolution 1

…

Evolution 2

… …

Evolution n

…

𝐿𝐿𝑔𝑔 𝐿𝐿𝑔𝑔 𝐿𝐿𝑔𝑔

𝛬𝛬𝐿𝐿 𝛬𝛬𝐿𝐿 𝛬𝛬𝐿𝐿

µ1 , µ2 , µ3, µ4 µ1 , µ2 , µ3, µ4 µ1 , µ2 , µ3, µ4



Dynamic Metrics
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Connectedness Metric 1

• Increases when interconnections occur in the network.

FloodingMetric 2

• This metric is influenced by the occurrence of connections as well as the weight of 
those connections.

WiringnessMetric 3

• It always increases when connections occur and its slope across time depends on 
the packets sizes.

AsymmetryMetric 4

• It corresponds to the number of variations of Λ(t) and the symmetry of the graph



Metric 1 - Connectedness

29/09/2023 Chung, F. R. (1997). Spectral graph theory (Vol. 92). American Mathematical Soc. 16

number of zeros in the spectrum.

lim
Ζ(𝑡𝑡)→∞

𝜇𝜇1 = 𝑒𝑒−1

lim
Ζ(𝑡𝑡)→1

𝜇𝜇1 = 1



Metric 2 - Flooding

De Abreu, N. M. M. (2007). Old and new results on algebraic connectivity of graphs. Linear algebra and its applications, 423(1), 53-73. 17

𝒩𝒩 is the number of servers/hubs
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Metric 3 - Wiriness

29/09/2023 Bauer, F., Jost, J.: Bipartite and neighborhood graphs and the spectrum of the normalized graph laplacian. arXiv preprint arXiv:0910.3118 (2009) 18
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Metric 4 - Asymmetry
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with ε = 10-12

Identical patterns/symmetry

Metric 4

Results in
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Implementation and datasets

[Boo+21] Tim M Booij et al. “ToN_IoT: The role of heterogeneity and the need for standardization of features and attack types in IoT network intrusion data sets”. In: IEEE 
Internet of Things Journal 9.1 (2021), pp. 485–496.
[Kor+19] Nickolaos Koroniotis et al. “Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset”. In: 
Future Generation Computer Systems 100 (2019), pp. 779–796.
[hussain2021iot] Hussain, F., Abbas, S. G., Shah, G. A., Pires, I. M., Fayyaz, U. U., Shahzad, F., ... & Zdravevski, E. (2021). IoT Healthcare Security Dataset. IEEE Dataport. 20

Ton IoT Healthcare IoT Botnet IoT



Attack analysis
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Botnet IoT dataset Ton IoT dataset IoT Healthcare 
Security 
Dataset



Network patterns
First step for detection
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Star

Star

Star



First Methodology
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Starting with
Star graph topologies

Normal case scenario

Suspicious case scenario
DoS/DDoS attack behavior



Experiments – Scenario 1 – Attack behavior
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3

2 4

1



Experiments – Scenario 2 – Normal behavior
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1 3

2 4



Experiments Evaluation
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Metrics over real dataset

datasets

Apply metrics over datasets

µ1 , µ2 , µ3, µ4

Detect Suspicious behaviors
C
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BotIoT graph representation

TonIoT graph representation



29/09/2023 Towards attack detection in traffic data based on spectral graph analysis 28

Challenges over real datasets

stime                saddr                  daddr            pkts    label

576923  1526344032   192.168.100.46    192.168.100.5     59452 0

576917  1526344032   192.168.100.46    192.168.100.5     30157 0

576916  1526344032   192.168.100.46    192.168.100.5     29726 0 

576921  1526344032   192.168.100.3      13.55.154.73        3018 1

576884  1526344121   192.168.100.1      192.168.100.3      4 0
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From dataset to timeseries
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Evolution 1

Evolution 2

…

Evolution n

Evolutions

µ1 , µ2 , µ3, µ4
µ1 , µ2 , µ3, µ4

…

µ1 , µ2 , µ3, µ4
Calculate Metrics Apply Classification Methods

• Random Forest
• Decision Tree
• MLP
• XGBoost
• SVM
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1𝑚𝑚𝑚𝑚𝑚𝑚𝒕𝒕𝟎𝟎
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µ4 

𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏

𝒕𝒕𝒕𝒕𝟏𝟏𝟏𝟏 𝒕𝒕𝒕𝒕𝟓𝟓
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µ4 

µ1 

µ2 

µ3 

µ4 
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𝒕𝒕𝒕𝒕𝟏𝟏𝟏𝟏 𝒕𝒕𝒕𝒕𝟔𝟔

𝒕𝒕𝟏𝟏 1𝑚𝑚𝑚𝑚𝑚𝑚
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𝒕𝒕𝒕𝒕𝟕𝟕 𝒕𝒕𝒕𝒕𝟏𝟏𝟏𝟏

𝑡𝑡𝑖𝑖 > 9

Timeseries to Evolutions
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Train-Test data

t1_m1 t1_m2 t1_m3 t1_m4 t2_m1 t2_m2 t2_m3 t2_m4 label

… … … … … … … … 1

µ1 

µ2 

µ3 

µ4 

µ1 

µ2 

µ3 

µ4 

𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂

𝒕𝒕𝒕𝒕𝒏𝒏/𝟐𝟐 𝒕𝒕𝒕𝒕𝒏𝒏
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Evaluation – BotIoT dataset

SVMRandom Forest Decision Tree

MLP

XGBoost

0
0.2
0.4
0.6
0.8

1
1.2

accuracy precision recall f1 score

Evaluation Metrics

DT SVM XGB RF MLP
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Evaluation – TonIoT dataset

SVMRandom Forest Decision Tree XGBoost

0.9985

0.999

0.9995

1

1.0005

accuracy precision recall f1 score

Evaluation Metrics

DT SVM XGB RF
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Achieved results

Metrics

Were able to detect attacks 
using our supposed metrics

DOS
DDOS
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Second Contribution
Can spectral analysis detect 
advanced attacks, a multistep 
attacks?

Spectral
Graph

Analysis



Multistep attack usecase
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Port 
scanning

Fingerprint

Exfiltration

Keylogging

DoS/DDoS



Sequence of multistep attack in BotIoT dataset
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Multistep attack criteria
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logs

High nb pkts

High pkt rate

Nb of Requests >= T
Nb of Requests < T

& High TnBPSrcIP
& High TnBPDstIP

& State FIN
SSH port 22 

Https port 443 
& State RST

otherwise

?

?

Fingerprint

Port scan

Exfiltration

Keylogging

Normal

otherwise

otherwise
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Coming work



Thank you
Majed Jaber majed.jaber@epita.fr
Nicolas Boutry nicolas.Boutry@epita.fr
Pierre Parrend pierre.parrend@epita.fr



Any Questions
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