Séminaire interne

29/09/2023 Côme Frappé – – Vialatoux

Sujet de thèse

Détection d'anomalie dans les Réseaux de distribution de l'eau par algorithmes génétiques à estimation de distribution

Étude de cas – Données cyber– physiques

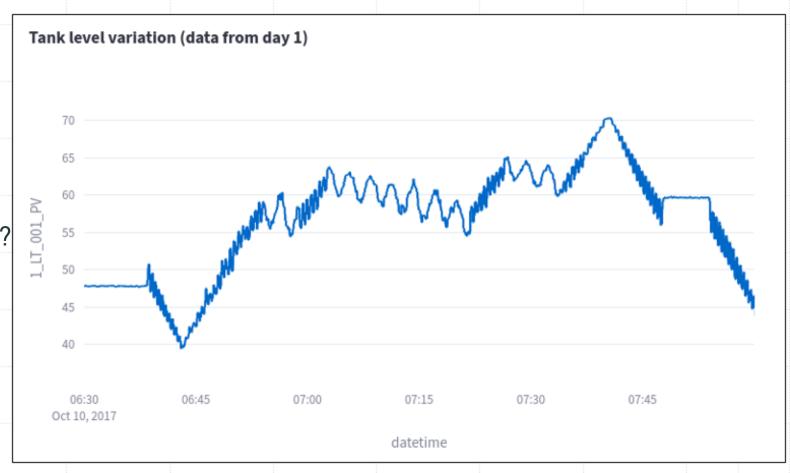
Plan:

- 1. Exemple de données physique
- 2. Exemple d'interactions cyber-physiques
- 3. Résultats récents : Méthodologie d'exploration de données Cyber

Description du jeu de données:

Nom : WADI (<u>lien</u>)

- ~ 1M lignes
- 90+ colonnes
 - Senseurs physiques
 - Flux, niveau, valves, pression, pompes, etc.
 - Senseurs chimiques
 - Ph, turbidité, conductivité, potentiel redox, chlorine résiduelle
- 13 Scénarios d'attaques

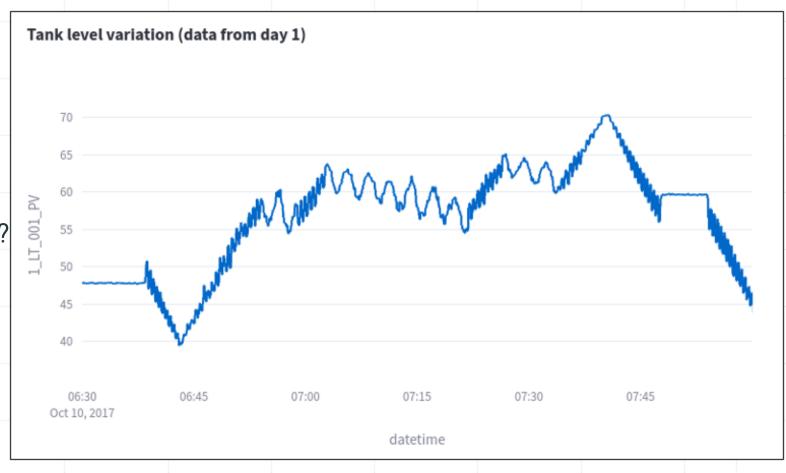

Exemple

e _l	Attack Identifier	Starting Time	Ending Time	Duration (minutes)	Attack description
	1	9/10/17 19:25:00	9/10/17 19:50:16	25.16	Motorized valve 1_MV_001 is mali- ciously turned on, this causes an over- flow on primary tank should reflect on 1LT001 and 1FIT001

Parmi les Données:

Niveau d'eau dans une cuve au cours du temps

Question: Que remarquez-vous?

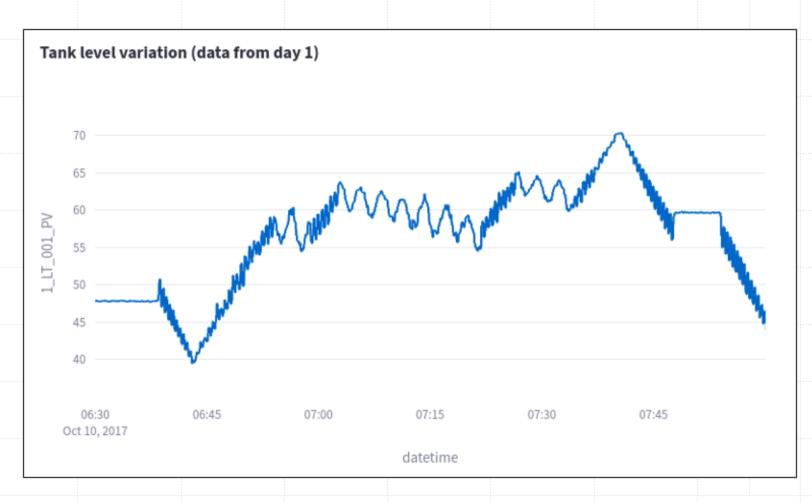


Parmi les Données:

Niveau d'eau dans une cuve au cours du temps

Question: Que remarquez-vous?

 passage d'un palier à l'autre en "Oscillation"



Parmi les Données:

Niveau d'eau dans une cuve au cours du temps

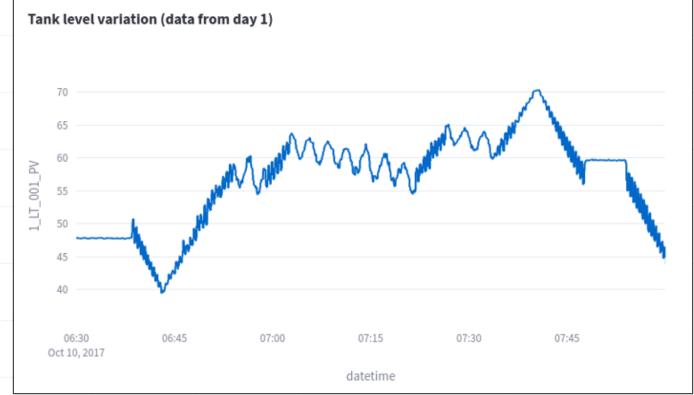
 Passage d'un palier à l'autre en "Oscillation"

-> Explication?

Parmi les Données:

Niveau d'eau dans une cuve au cours du temps

- Passage d'un palier à l'autre en "Oscillation"
- Comment mesurer le niveau d'eau ?

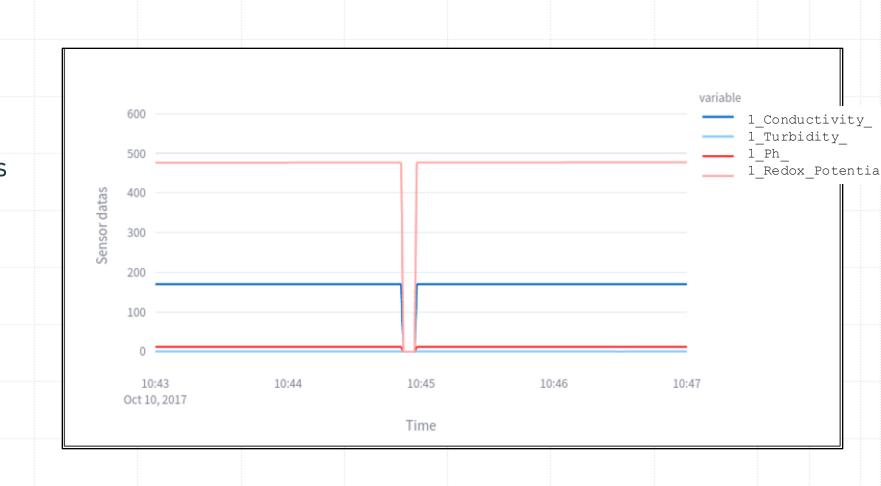


Parmi les Données:

Niveau d'eau dans une cuve au cours du temps

- Passage d'un palier à l'autre en "Oscillation"
- Comment mesurer le niveau d'eau ?
 - Capteur de Surface
 - Capteur de pression

Conclusion:


 Visualisation du niveau d'eau => inférer le type d'équipement de capture

Autre exemple:

- Pendant 6 secondes, les valeurs de 4 colonnes passent à zéro
- Que s'est-il passé?

Autre exemple:

- Pendant 6 secondes, les valeurs de 4 colonnes passent à zéro
- Que s'est-il passé?

```
1_Conductivity_
1_Turbidity_
```

1 Ph

1_Redox_Potential

Table 2: Equipment list for P1 (Water Supply)

Description Design Specification		Material Qty		Brand & Model	Remarks	
Pumps & Tanks						
Raw Water Tank Capacity: 2.5m³		Tank Wall: FRP Stand & Base: Mild Steel	2	Customised	With Drain Valve at Bottom	
Raw Water Transfer Pump	Duty: 2.5 m³/h @ 20m	Casing: Chrome Nickel SS Impeller: Noryl Shaft: SS	2	CALPEDA MXH 203		
Chemical Capacity: Dosing Pumps 0.78 I/h @ 5 bar		Liquid end : Plexiglas Diaphragm : PTFE faced	4	Prominent GALa1601		
Instrumentation				2	110	
Level Transmitters	Radar, Range 0.2 to 6m	Non Contact	1	iSOLV RD 700		
Flow Transmitter	Electromagnetic DN40	PTFE	1	iSOLV EFS803/CFT183		
Multi Probe Analyser	pH/ ORP/ Conductivity & Turbidity		1	Hydrolab HL4		
Total Chlorine Analyser	TRC 0-5ppm		1	W&T Depolox 3		
Piping & Accessor	ries					
Piping	SCH80	PVC	Lot			
On/Off Valve DN 25, Electric Actuated		PVC	3	Burkert Type 3003		

Autre exemple:

- Pendant 6 secondes, les valeurs de 4 colonnes passent à zéro
- Que s'est-il passé?

```
1_Conductivity_
1_Turbidity_
```

Table 2: Equipment list for P1 (Water Supply)

Description Design Specification		Material Qty		Brand & Model	Remarks	
Pumps & Tanks						
Raw Water Tank Capacity: 2.5m³		Tank Wall: FRP Stand & Base: Mild Steel	2	Customised	With Drain Valve at Bottom	
Raw Water Transfer Pump	Duty: 2.5 m³/h @ 20m	Casing: Chrome Nickel SS Impeller: Noryl Shaft: SS	2	CALPEDA MXH 203		
Chemical Capacity: Dosing Pumps 0.78 I/h @ 5 bar		Liquid end : Plexiglas Diaphragm : PTFE faced	4	Prominent GALa1601		
Instrumentation	·				110	
Level Transmitters	Radar, Range 0.2 to 6m	Non Contact	1	iSOLV RD 700		
Flow Transmitter	Electromagnetic DN40	PTFE	1	iSOLV EFS803/CFT183		
Multi Probe Analyser	pH/ ORP/ Conductivity & Turbidity		1	Hydrolab HL4		
Total Chlorine Analyser	TRC 0-5ppm		1	W&T Depolox 3		
Piping & Accessor	ries					
Piping	SCH80	PVC	Lot			
On/Off Valve DN 25, Electric Actuated		PVC	3	Burkert Type 3003		

¹ Ph

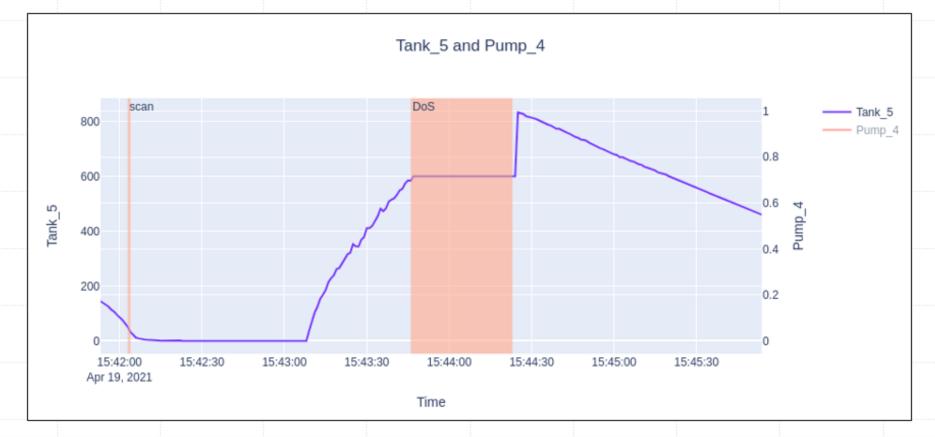
¹_Redox_Potential

Autre exemple:

- 4 données indépendantes
- Mais captées par la même sonde
- Défaillance technique
 - 4 données impactées en même temps

Table 2: Equipment list for P1 (Water Supply)

Description Design Specification		Material Qty		Brand & Model	Remarks	
Pumps & Tanks		30				
Raw Water Tank Capacity: 2.5m³		Tank Wall: FRP Stand & Base: Mild Steel	2	Customised	With Drain Valve at Bottom	
Raw Water Transfer Pump	Duty: 2.5 m³/h @ 20m	Casing: Chrome Nickel SS Impeller: Noryl Shaft: SS	2	CALPEDA MXH 203		
Chemical Capacity: 0.78 I/h @ 5 bar		Liquid end : Plexiglas Diaphragm : PTFE faced	4	Prominent GALa1601		
Instrumentation	·			2	110	
Level Transmitters	Radar, Range 0.2 to 6m	Non Contact	1	iSOLV RD 700		
Flow Transmitter	Electromagnetic DN40	PTFE	1	iSOLV EFS803/CFT183		
Multi Probe Analyser	pH/ ORP/ Conductivity & Turbidity		1	Hydrolab HL4		
Total Chlorine Analyser	TRC 0-5ppm		1	W&T Depolox 3		
Piping & Accessor	ries					
Piping	SCH80	PVC	Lot			
On/Off Valve DN 25, Electric Actuated		PVC	3	Burkert Type 3003		


- Comprendre les données = extraire de l'information supplémentaire
- Comprendre l'infrastructure = comprendre les données

Description du jeu de données:

Nom: Hardware in the loop (Lien vers Dataset)

- Attaques physiques + cyber
 - Physical Fault, Man in the Middle, Dos, Scan
- · Données Physiques:
 - ~11000 lignes
 - ~40 senseurs physiques (valves, tank level, pump flow pressure)
 - Pas de senseurs chimiques
- Données Réseau:
 - ~10M lignes
 - Communications des équipements

Effet d'une attaque Cyber sur données physiques

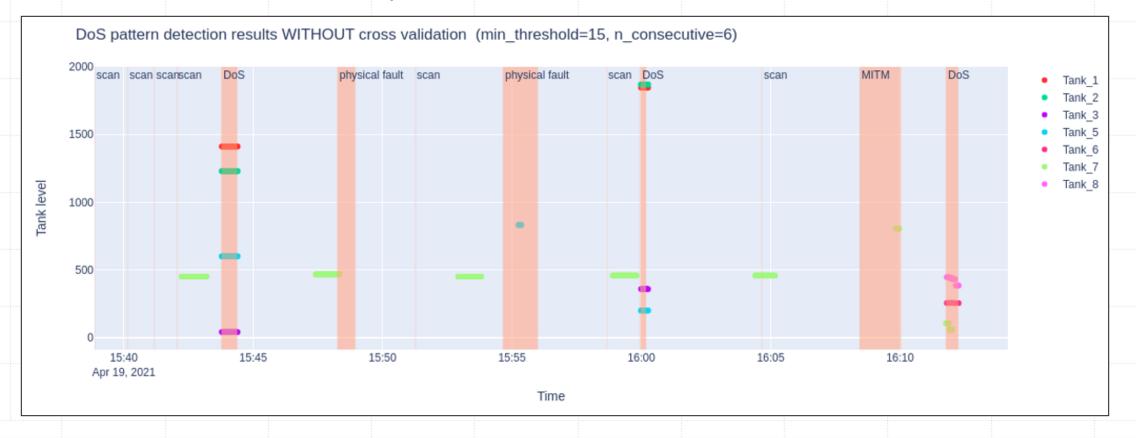
Effet d'une attaque Cyber sur données physiques

- Attaque doS sur un senseur = illusion de stabilité de niveau d'eau
- Caractérisation du DoS très forte grâce aux données physiques
 - Et si on faisait un pattern?

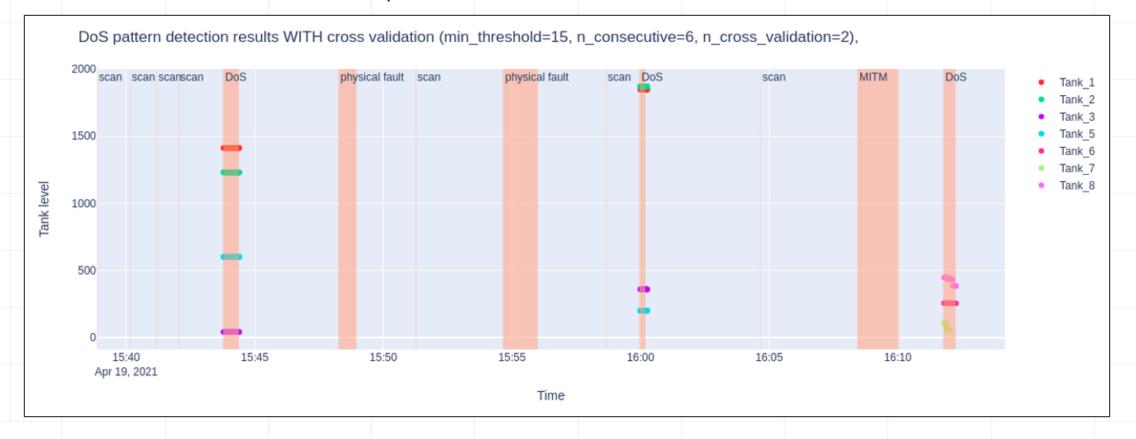
Effet d'une attaque Cyber sur données physiques

- Algorithme de détection de DoS par les données physiques
 - Pattern:

N_consecutive (constant values > Seuil_minimum) Sur N_tanks

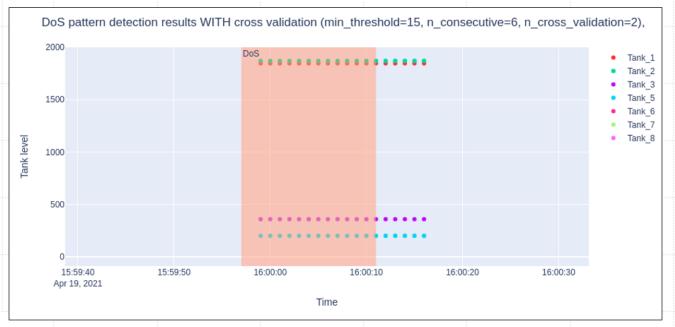

Paramètres: *N_consecutive* : Durée Minimum de Dos à détecter

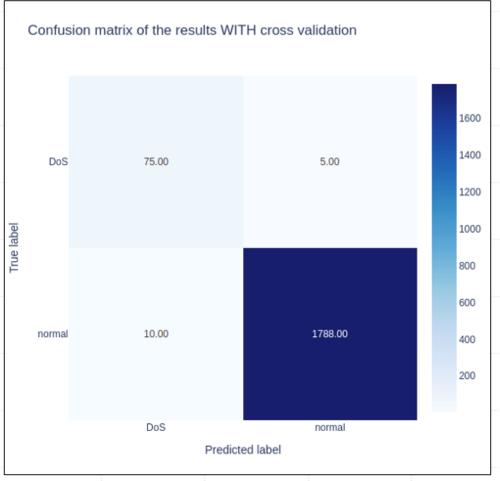
Seuil_minimum: Cuve vide ≠ DoS


N_tanks : nombre de tanks simultanés sur lequel pattern = Vrai

-> Réduit faux positifs

Résultats (SANS utilisation du paramètre n_tank)


Résultats (AVEC utilisation du paramètre n_tank=2)



Résultats (AVEC utilisation du paramètre n_tank=2)

FN = temps avant effet du DoS

FP = Temps après effet du DoS (reprise du système)

Effet d'une attaque Cyber sur données physiques

- Effets interliés des attaques cyber <-> physiques
- · Mise en relation des 2 plans = augmentation de surface détection

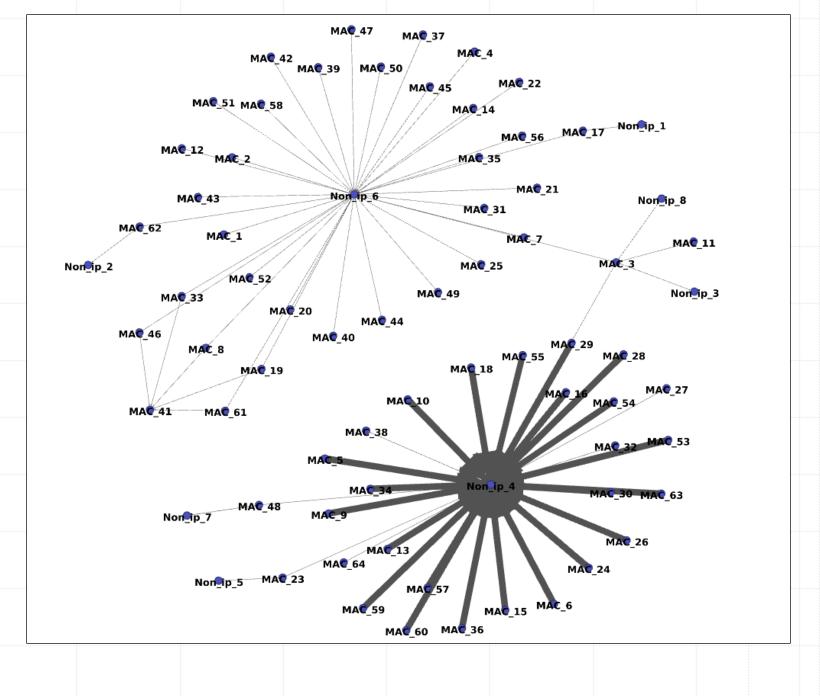
Résultats Récents

- Formalisation méthodologique
 - Analyse exploratoire de Datasets cyber-physiques

Approche Visuelle & hiérarchique :

- Caractéristiques visualisation Haut-niveaux:
 - Donnent une vue d'ensemble des données
 - Expliquent les concepts de base
 - Contiennent de l'information exclusive (pas présentes dans d'autres Viz)
 - Introduisent les Viz plus compliquées

Résultats Récents


- Formalisation méthodologique
- 3 visualisations haut niveaux trouvées:
 - Topologique / Temporelle / Distribution
 - Méthodologie:
 - 1. Visualisation Topologique
 - 1. Identification de points d'intérêts
 - 2. Visualisation Temporelle
 - 1 Identification de points d'intérêts
 - 3. Visualisation de distribution
 - 1. Identification de points d'intérêts

Visualisation Topologique

Structure du réseau

- Qui parle avec qui
- Nombre de messages échangés

Vue d'ensemble → Check Concept de base → Check Information Exclusive → Check Introduction d'autre Viz → Check

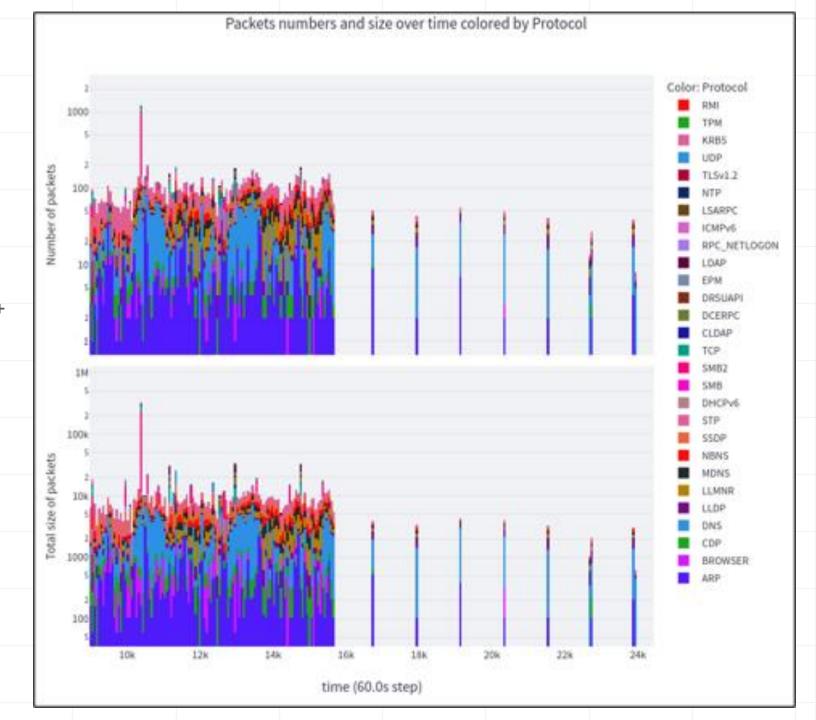


Visualisation Topologique

Structure du réseau

- Qui parle avec qui
- Nombre de messages échangés

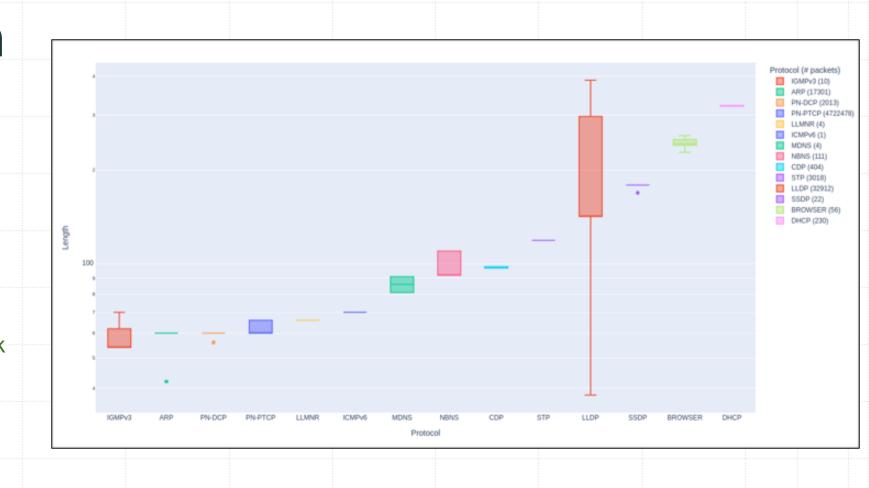
Vue d'ensemble → Check Concept de base → Check Information Exclusive → Check Introduction d'autre Viz → Check



Visualisation Temporelle

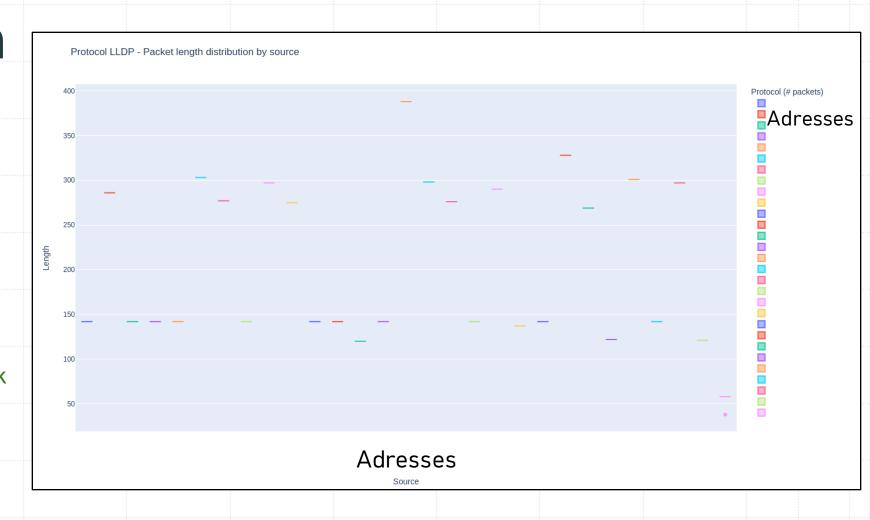
 Protocoles utilisés dans le temps + nombre

Vue d'ensemble \rightarrow Check Concept de base \rightarrow Check Information Exclusive \rightarrow Check Introduction d'autre Viz \rightarrow ~Check


Possibilité de naviguer

Visualisation Distribution

Boxplot protocoles


Vue d'ensemble → Check Concept de base → Check Information Exclusive → Check Introduction d'autre Viz → Check

Visualisation Distribution

 Boxplot d'un protocoles, par addresse

Vue d'ensemble → Check Concept de base → Check Information Exclusive → Check Introduction d'autre Viz → Check

Perspectives Voyez-vous l'angle mort de cette méthodologie?

Perspectives

Voyez-vous l'angle mort de cette méthodologie?

- Rien pour examiner les labels de données labellisées!
- la raison : pas de labels dans le dataset de base.
- Prochain étape : éprouver méthodo sur données labellisées
 - peut-être super efficace également
 - peut-être pas
 - Adapter la méthodologie

		 3				
Marcil						
Merci!						