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" |ntroduction of the team and my career

= Cybersecurity and cyberattacks
"= A network can be modeled by a (dynamical) graph
= Anomaly Detection, the State-of-the-Art
= Spectral Graph Analysis, a new approach for cybersecurity
" Experiments & Evaluation

"  Future works

Towards attack detection in traffic data based on spectral graph analysis



Cybersecurity against attacks
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' Graph represents a networks

Identify patterns

Understand the network
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' State-of-t
T

Statistical Approaches

A real-time
network anomaly-detector
(ReTiNA)

Traditional systems use

he-Art

ML Approaches

CAMLPAD model
anomalies are assigned an outlier
score
ML-based techniques are supervised
algorithms

elementary statistics
techniques and are often
inaccurate

- Noble, J., Adams, N.: Real-time dynamic network anomaly

In network security, there are not
much labeled data to train efficient
classifiers

detection. IEEE Intelligent Systems 33(2), 5-18 (2018)

- Hariharan, A., Gupta, A., Pal, T.: Camlpad: Cybersecurity autonomous machine

learning platform for anomaly detection. In: Future of Information and Communication Conference. pp. 705-720. Springer (2020)

- Bowman, B., Huang, H.H.: Towards next-generation cybersecurity with graph ai.

ACM SIGOPS Operating Systems Review 55(1), 61-67 (2021)

- Weifeng Liu, Sichao Fu, Yicong Zhou, Zheng-Jun Zha, and Ligiang Nie. Human activity

recognition by manifold regularization based dynamic graph
Neurocomputing, 444:217-225, 2021.

convolutional networks.

GCN Approaches

One of the best choice for graph data
learning tasks

The Dynamic Graph
Neural Networks (DGNNs) are known
to be an interesting tool to detect
anomalies in complex dynamic

graphs




SPECTRUM

observe observe

Need of Metrics

|

Quantify a threat
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Spectral graph analysis

Studying the spectrum of
the Laplacian Matrix

Mathematical
techniques

Analyze graph properties Feature extraction
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What type of matrix used?

The most commonly used matrix in spectral graph analysis is
the Laplacian matrix.

Why Laplacian rather than other
matrixes?

Ld p I d C I G n ¢ Better spectral properties

** More robust to changes in the graph structure.

** The spectrum of the Laplacian matrix are used in
various applications of spectral graph analysis,
such as clustering, community detection, and
graph partitioning.

Matrix
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Laplacian Matrix
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' What is a spectrum?

the spectrum refers to the set of eigenvalues of the
Laplacian matrix.

If A is a square matrix and V/ is a column vector

such that:
“r (o)

Spectrum

then

) * \/ = Eigen vector of A
Eigenvalues

Wi )\ =Eigenvalueof A

Chung, F. R. (1997). Spectral graph theory (Vol. 92). American Mathematical Soc.



Spectrum Interesting eigenvalues

Algebraic Largest

Zero eigenvalues . . :
connectivity eigenvalues

- De Abreu, N. M. M. (2007). Old and new results on algebraic connectivity of graphs. Linear algebra and its
applications, 423(1), 53-73.

- Bauer, F., Jost, J.: Bipartite and neighborhood graphs and the spectrum of the

normalized graph laplacian. arXiv preprint arXiv:0910.3118 (2009)




'Spectrum Interesting EV - Example

| (e
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' Research Question

How can we benefit from
spectral graph analysis to
identify and detect
cyberattacks over the

network? Spectral
Graph

Analysis
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Dynamicity of graph

from graph to evolutions
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Dynamic Metrics
 Mewicl

Metric 1 Connectedness

« Increases when interconnections occur in the network.

Metric 2 Flooding

- This metric is influenced by the occurrence of connections as well as the weight of
those connections.

Metric 3

- It always increases when connections occur and its slope across time depends on
the packets sizes.

Wiringness

Metric 4 Asymmetry

- It corresponds to the number of variations of A(t) and the symmetry of the graph
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Metric 1 - Connectedness

|

exp =gy
mt) = —5nay

SPECTRUM

E{t} number of zeros in the spectrum.

- !
20 11 = € o

z%%)m—uﬂl =1
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Metric 2 - Flooding

=N .
pa(t) = 355 (exp** ) —1)

N is the number of servers/hubs

f Connections/Flooding

Results in

f Metric 2
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Metric 3 - Wiriness

pa(t) =2 w1 Ae(t)

N is the number of servers/hubs

f pkts/bytes

Results in

f Metric 3
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Metric 4 - Asymmetry

na(t) = #H{k € [2,m] ; AQK] — A@)[k — 1] > €}

with € = 10712

‘ Identical patterns/symmetry

Results in

f Metric 4
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' Implementation and datasets

Ton loT Healthcare loT Botnet loT

[Boo+21] Tim M Booij et al. “ToN_IloT: The role of heterogeneity and the need for standardization of features and attack types in 1oT network intrusion data sets”. In: IEEE
Internet of Things Journal 9.1 (2021), pp. 485-496.

[Kor+19] Nickolaos Koroniotis et al. “Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset”. In:
Future Generation Computer Systems 100 (2019), pp. 779-796.

[hussain202liot] Hussain, F., Abbas, S. G., Shah, G. A., Pires, I. M., Fayyaz, U. U., Shahzad, F., ... & Zdravevski, E. (2021). loT Healthcare Security Dataset. IEEE Dataport.



Attack analysis

loT Healthcare
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Network patterns

First step for detection

Star

Star

[Boo+21] Tim M Booij et al. “ToN_loT: The role of heterogeneity and the need for standardization of features and attack typesin loT network intrusion data sets”. In: IEEE

Internet of Things Journal 9.1 (2021), pp. 485-496.

[Kor+19] Nickolaos Koroniotis et al. “Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset™. In:

Future Generation Computer Systems 100 (2019), pp. 779-796. 22
[hussain2021iot] Hussain, F., Abbas, S. G., Shah, G. A., Pires, I. M., Fayyaz, U. U., Shahzad, F., ... & Zdravevski, E. (2021). loT Healthcare Security Dataset. |IEEE Dataport.



First Methodology
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Experiments — Scenario 1 — Attack behavior
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Experiments — Scenario 2 — Normal behavior

%%%%%%
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Experiments Evaluation

Attack behavior vs Normal behavior
250,000

200

15

10

(&)

o /
Connectedness (p1) Flooding (p2) Wiriness (u3) Asymmetry (u4)

W Attack behavior Normal behavior
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Metrics over real datacet

BotloT graph representation

Apply metrics over datasets
Detect Suspicious behaviors .

I

1,H2,H3,Hg
o 0

=
==

datasets

Floodin
Wirines
Asymmetry

TonloT graph representation

Connectedness &
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Challenges over real datasets

/576923 1526344032 192.168.100.46 192.168.100.5 59452
576917 1526344032 192.168.100.46 192.168.100.5 30157

576916 1526344032 192.168.100.46 192.168.100.5 29726

\576921 192.168.100.3 13.55154.73 3018

576884 192.168.100.1 192.168.100.3 4 0
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From dataset to timeseries

stime saddr daddr pkts attack weight
B /576923 1526344032 192.168.100.46 192.168.100.5 ' 59452 0 1 )
Merge == 576917 15263440?192.168.100.46 192.168.100.5 @ 30157 0 1
576916 15263440?192.168.100.5 192.168.100.3 | 29726 0 1 )
- 576921 1526344033 192.168.100.7 13.55.154.75 3018 0 1
576884 192.168.100.1 192.168.100.3 4 0 1
stime saddr daddr pkts attack  requests
[" 192.168.100.46 192.168.100.5 2 pkts =89,609 g  » weight =2
0 1526344032 —
l__ 192.168.100.3  13.55.154.73 Zpkts = 29726 0 1
1526344033 192.168.100.7 13.55.154.75 ZF’“S = 3018 0 1
192.168.100.1 192.168.100.3 Zpkts =4 0 1
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Methodology

Evolutions Calculate Metrics Apply Classification Methods
* Random Forest

* Decision Tree

e MLP
» XGBoost
e SVM
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Timeseries to Evolutions
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Train-Test data
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Evaluation — BotloT dataset

Evaluation Metrics

MLP
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Evaluation — TonloT dataset

Evaluation Metrics
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Achieved results

Metrics

Were able to detect attacks
using our supposed metrics
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' Second Contribution

Can spectral analysis detect
advanced attacks, a multistep
attacks?
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' Multistep attack usecase
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Sequence of multistep attack in BotloT dataset

OS_Fingerprint Data_Exfiltration

Key Logging

»

Scanning ports related .
Scanning ports related TnBPSrclP Port 4433

;ostthe;operatmg to the services i TCP connection
Y RST-TCP every time

A\ J

e N
High rate of packets High rate of packets /Port 80 (HTTP) \
RST-TCP every time RST-TCP every time Port 443 (HTTPS)

\ . Port 53 (DNS)

Port 21 (FTP)

Port 22 (SSH)

Port 25 (SMTP)
RST-TCP every time

o

/
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Multistep attack criteria

SSH port 22

& State FIN

& High TnBPSrclP

& High TnBPDstIP

otherwise

High pkt rate

- n =

Nb of Requests >=T

Https port 443
& State RST

Nb of Requests < T

otherwise
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Coming work

Evolution graph -= UDP proto Evolution graph -= TCP proto Ewolution graph -= 85H port 22
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Thank you

Majed Jaber majed.jaber@epita.fr

Nicolas Boutry nicolas.Boutry@epita.fr

Pierre Parrend pierre.parrend@epita.fr
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