Hi every one,
I'm happy to annonce the publication of the following papers :
1) In SETTA'2022
Title : Diversifying a parallel SAT solver with Bayesian Moment Matching
Authors : V. Vallade, S.Nejati, J.Sopena, V. Ganesh and S. Baarir
Abstract : In this paper, we present a Bayesian Moment Matching (BMM) in-processing technique for Conflict-Driven Clause-Learning (CDCL) SAT solvers. BMM is a probabilistic algorithm which takes as input a Boolean formula in conjunctive normal form and a prior on a possible satisfying assignment, and outputs a posterior for a new assignment most likely to maximize the number of satisfied clauses. We invoke this BMM method, as an in-processing technique, with the goal of updating the polarity and branching activity scores. The key insight underpinning our method is that Bayesian reasoning is a powerful way to guide the CDCL search procedure away from fruitless parts of the search space of a satisfiable Boolean formula, and towards those regions that are likely to contain satisfying assignments.
2) In VMCAI'2023
Title : CosySEL: Improving SAT Solving Using Local Symmetries
Authors : S. Saouli , S. Baarir , C. Dutheillet and J. Devriendt
Abstract : Many satisfiability problems exhibit symmetry properties. Thus, the development of symmetry exploitation techniques seems a natural way to try to improve the efficiency of solvers by preventing them from exploring isomorphic parts of the search space. These techniques can be classified into two categories: dynamic and static symmetry breaking. Static approaches have often appeared to be more effective than dynamic ones. But although these approaches can be considered as complementary, very few works have tried to combine them. In this paper, we present a new tool, CosySEL, that implements a composition of the static Effective Symmetry Breaking Predicates (esbp) technique with the dynamic Symmetric Explanation Learning (sel). esbp exploits symmetries to prune the search tree and sel uses symmetries to speed up the tree traversal. These two accelerations are complementary and their combination was made possible by the introduction of Local symmetries. We conduct our experiments on instances issued from the last ten sat competitions and the results show that our tool outperforms the existing tools on highly symmetrical problems
See you,
Souheib.